全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多

 regular element 的翻译结果: 查询用时：0.049秒
 在分类学科中查询 所有学科 数学 更多类别查询

 历史查询

 regular element 正则元(8)正则元(0)正规元(2)
 正则元
 Characters of Left Unit Element and Regular Element of N (2,2,0) Algebra N(2,2,0)代数的左单位元及正则元的特征 短句来源 In this paper,the concepts of regular element and regular BCK—algebra in BCK—algebras are introduced. 本文给出了正则元、正则BCK—代数的概念。 短句来源 The Paper focuses on the characters of left Unit element and regular element of N (2,2,0) algebra and its relation. 本文研究N（2，2，0）代数的左单位元、正则元的特征，指出它们之间的联系． 短句来源 If some power of any element of semigroup S is regular and every regular element of S has unique inverse element, then S is called π-inverse semigroup. 如果半群S的任意一个元素的若干次幂是正则的 ,并且S的每个正则元有唯一的逆元 ,则称S为π -逆半群 . 短句来源 Algorithms to find all the g-inverses for a regular element and all the group inverses for a completely regular element in the semigroup G_n(C) are given. 同时给出求G_n(C)中正则元的g-逆与完全正则元的群逆的一个算法。 短句来源 更多
 正则元
 Characters of Left Unit Element and Regular Element of N (2,2,0) Algebra N(2,2,0)代数的左单位元及正则元的特征 短句来源 In this paper,the concepts of regular element and regular BCK—algebra in BCK—algebras are introduced. 本文给出了正则元、正则BCK—代数的概念。 短句来源 The Paper focuses on the characters of left Unit element and regular element of N (2,2,0) algebra and its relation. 本文研究N（2，2，0）代数的左单位元、正则元的特征，指出它们之间的联系． 短句来源 If some power of any element of semigroup S is regular and every regular element of S has unique inverse element, then S is called π-inverse semigroup. 如果半群S的任意一个元素的若干次幂是正则的 ,并且S的每个正则元有唯一的逆元 ,则称S为π -逆半群 . 短句来源 Algorithms to find all the g-inverses for a regular element and all the group inverses for a completely regular element in the semigroup G_n(C) are given. 同时给出求G_n(C)中正则元的g-逆与完全正则元的群逆的一个算法。 短句来源 更多
 正规元
 A Few Types and Simple Natures of I-Right Regular Element and I-Right Regular Ideal I-右正规元、I-正规右理想的几种类型及简单性质 短句来源 SOME FURTHER DISCUSSION ABOUT I-RIGHT REGULAR ELEMENT AND I-REGULAR RIGHT IDEAL 对I-右正规元、I-正规右理想的进一步探讨 短句来源
 正则元
 Characters of Left Unit Element and Regular Element of N (2,2,0) Algebra N(2,2,0)代数的左单位元及正则元的特征 短句来源 In this paper,the concepts of regular element and regular BCK—algebra in BCK—algebras are introduced. 本文给出了正则元、正则BCK—代数的概念。 短句来源 The Paper focuses on the characters of left Unit element and regular element of N (2,2,0) algebra and its relation. 本文研究N（2，2，0）代数的左单位元、正则元的特征，指出它们之间的联系． 短句来源 If some power of any element of semigroup S is regular and every regular element of S has unique inverse element, then S is called π-inverse semigroup. 如果半群S的任意一个元素的若干次幂是正则的 ,并且S的每个正则元有唯一的逆元 ,则称S为π -逆半群 . 短句来源 Algorithms to find all the g-inverses for a regular element and all the group inverses for a completely regular element in the semigroup G_n(C) are given. 同时给出求G_n(C)中正则元的g-逆与完全正则元的群逆的一个算法。 短句来源 更多

我想查看译文中含有：的双语例句

 regular element
 On a generalization of a right [left] regular element of a semigroupS An observation which is used extensively in this study is the fact that forw andt inS withwt≠t,S/ρ(wt,t) is flat if and only ift is a regular element ofS. We show that it is possible for a regular element of a noncommutative Noetherian ringR to become a zero-divisor in theM-adic completion ofR for a maximal idealM ofR. We show that the Schützenberger group of theH class ofm embeds in the automorphism group of theR graph ofm, and that the embedding is an isomorphism ifm is a regular element. Semigroups in which[InlineEquation not available: see fulltext.] and ? coincide for regular elementscoincide for regular element 更多
 In order to spread the finite element method,it is necessary to study the methods forsolving large problems by small computers.Six new and old suggestions are emphasizedIt is advisable to use standard and regular elements,and to use appropriatecombinaton of large and small elements.The interpolation formulae with high precisionshould be employed as much as possible and attention should be paid to the boundary andother local effects. 为推广有限元素法的应用,当前需要研究小算机解大问题的方法.本文归纳补充散见于文献中的六点建议.概括起来是:优先采用标准元素;优先采用规则形状的元素;大元素、小元素联合应用;在大元素中尽量采用精确解或高精度的插入公式;注意有无边界效应或其他局部效应,在有这些效应时,划分元素宜充分注意局部效应的具体特点. In finite element analysis of transient temperature field, it is quite notorious that the numerical solution may quite likely oscillate and/or exceed the reasonable scope, which violates the natural law of heat conduction. For this reason, we put forward the concept of time monotony and spatial monotony, and then derive several sufficient conditions for monotonic solutions in time dimension for 3-D passive heat conduction equations with a group of finite difference schemes. For some special boundary conditions... In finite element analysis of transient temperature field, it is quite notorious that the numerical solution may quite likely oscillate and/or exceed the reasonable scope, which violates the natural law of heat conduction. For this reason, we put forward the concept of time monotony and spatial monotony, and then derive several sufficient conditions for monotonic solutions in time dimension for 3-D passive heat conduction equations with a group of finite difference schemes. For some special boundary conditions and regular element meshes, the lower and upper bounds for can be obtained from those conditions so that reasonable numerical solutions are guaranteed. Spatial monotony is also discussed. Finally, the lumped mass method is analyzed. 用有限元法分析瞬态温度场,很有可能得到“振荡”和“超界”的计算结果.这两种现象不符合热传导规律.为解决此问题,我们提出时间单调性和空间单调性的概念,推导出三维无源热传导方程的数值解的时间单调性的几组充分条件.对某些特殊边值问题,使用规则单元网格,可以得到合理结果时Δt/Δx~2的上下界公式.文中还研究了空间单调性.最后我们还讨论了集中质量阵的算法.针对以热传导方程为代表的这一类抛物型方程的有限元算法,我们创造性地给出几组计算准则. In this paper,we discuss the strog]y Gv semigroups the main results are the str- ucture theorems of several classes strongly GV semigroups We also discuss the set of regular elements and the set of idempotent elements of a GV semigroup. 本文引入强 GV 半群的溉念并讨论强 GV 半群,强 GV 逆半群,强 GV 右逆半群的性质和结构。本文还讨论了 GV 半群的正则元集及幂等元集的性质。 << 更多相关文摘
 相关查询

 CNKI小工具 在英文学术搜索中查有关regular element的内容 在知识搜索中查有关regular element的内容 在数字搜索中查有关regular element的内容 在概念知识元中查有关regular element的内容 在学术趋势中查有关regular element的内容
 CNKI主页 |  设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
2008 CNKI－中国知网

2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社