 全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多   real coefficient 的翻译结果: 查询用时：0.162秒 在分类学科中查询 所有学科 数学 更多类别查询 历史查询  real coefficient 实系数(20)  实系数
 Using relationship among deficiency indices of 2nd order real coefficient symmetric differential operators L(y) on 0,∞),deficiency indices of square operators L 2(y), dimesions of null spaces of l(y) and dimesions of null space of L 2(y), we obtain that coefficient q(x) of L(y) is a solution of L(y)=0, then L(y) is in limit point case at +∞. 利用二阶实系数对称微分算式L（y）的亏指数与其相应零空间维数之间以及平方算子L2（y）的亏指数与其相应零空间维数之间的相互联系，得到在〔0，∞）上L（y）为极限点型的一个充分条件：q（x）为微分方程L（y）＝0的解． 短句来源 Based on the Galois theory,we know the root solution of real coefficient cubic equation. 由域论的Galois理论,我们知道实系数三次方程有根式解。 短句来源 Decomposition Conditions and Method of Real Coefficient Quadratic Polynomial in Two Elements 实系数二元二次多项式在R中可分解的条件及分解方法 短句来源 The Paper deals with the distribution of the real roots α and β in the Unary form quadratic equation of real coefficient,which is divided into two types, α and β in different sections and in the same sections. 将实系数一元二次方程两个实根α、β分布情况，整理成当α、β分居两个不同的区间与当α、β同居一个区间这两种基本类型。 短句来源 The Discussion of Real Coefficient Cubic Algebraic Curve 对于实系数三次代数曲线的讨论 短句来源 更多 “real coefficient”译为未确定词的双语例句
 Problems on Solving Real Roots of Unitary Real Coefficient's Polynomial Equation 一元实系数多项式方程实根的求解问题 短句来源 On Real Coefficient Quadratic Equation’s Root of Commutative Algebra 交换代数中二次方程根的若干性质 短句来源 Real Coefficient Quadratic Equations Formula of Root on Real Commutative Algebra 交换代数中二次方程的求根公式 短句来源 he classification of nonsigular real coefficient cubic projective curve is solved, The number of singular point of real cubic affine curve is solved. 解决了非退化实三次射影曲线的分类，进而给出了实三次仿射曲线实奇点的个数． 短句来源 his paper presents a relation formula among the five roots of a real coefficient quintic algebraic equation, a distinguish theorem for the existence of quintuple root, quadruple root, triple root and double root in the equation, and a formula to extract the multiple roots of the equation.  给出了实系数五次代数方程五个根之间的关系式和方程有五重根、四重根、三重根及二重根的判别定理，并给出了求重根的公式． 短句来源 更多 相似匹配句对
 To be and to be real 实在与真实 短句来源 The Discussion of Real Coefficient Cubic Algebraic Curve 对于实系数三次代数曲线的讨论 短句来源 Caculation of Adiabatic Throttle Coefficient for Real Gas 实际气体绝热节流系数的计算 短句来源 Real Dream “真实”之梦 短句来源 THE ABSORPTION COEFFICIENT OF H~- H~-之吸收系数(英文) 短句来源 查询“real coefficient”译词为用户自定义的双语例句

我想查看译文中含有：的双语例句  real coefficient
 These requirements are satisfied by a class of Finslerian theories parametrized by a real coefficient β, special relativity being recovered for β = 0. Let f(z)=z+sum from n=2 to ∞ a_nz~n be regular and schlicht in the unit circle. M. Schiffer proved that the function w=f(z) in the class of such functions, which renders |a_κ| the maximum, maps |z|<1 onto the whole W-plane with a finite number of analytic cuts. For the cases k=4 and k=5 Schaeffer-Spencer  and Golusin  proved respectively that there is only one cut for the extremal domain. The principal object of the present paper is to show that the same thing holds true for the cases k=6 and k=7. Our... Let f(z)=z+sum from n=2 to ∞ a_nz~n be regular and schlicht in the unit circle. M. Schiffer proved that the function w=f(z) in the class of such functions, which renders |a_κ| the maximum, maps |z|<1 onto the whole W-plane with a finite number of analytic cuts. For the cases k=4 and k=5 Schaeffer-Spencer  and Golusin  proved respectively that there is only one cut for the extremal domain. The principal object of the present paper is to show that the same thing holds true for the cases k=6 and k=7. Our proof depends upon the following lemmas: Lemma A. If{f(z)~2}_6=0; then |a_2|<1.63; and if {f(z)~2}_7=0; then |a_2|<1.77; Where {g(z)}_n denotes g~((n))(0). Lemma B. If |a_6|≥6 and {f(z)~2}6=0, than |a_2|>1.95, If |a_7|≥7 and {f(z)~2}_7=0, then |a_2|>1.85. Using merely the method of variation, without appealing to L(?)wner's method as done by M. Fekete and G. Szeg , we can prove the known theorem that (?)|a_3-αa_2~2|=1+2 exp(-2α/(1-α))(0≤α<1) with the "uniqueness" of the extremal function. For the functions f(z) satisfying the pair of conditions R(a_3)>0 and R(a_2)<0, we can pnove that the greatest value of R(a_2+a_3)is 1.03…,and that the correspondiong extremal function is of real coefficients. S表示單位圆|z|<1上單葉且正則的函數 f(z)=z+α_2z~2+α_3z~3+… (1.1)的全體所成之族。設S′是S的一個子族,S′中任一函數满足條件 R(α_3)>0,R(α_2)<0。對於S′中的函數,本文證明R(α_2+α_3)之最大值是可以達到的,其值是1.03…。達到此值的極值函數的一切係數都是實數,極值函數只有一個。舍勾和飛克得謝缶和斯賓塞爾以及沙拉烏洛夫先後用樓五納的參數表示法和變分法,求出 |a_3-αa_2~2|(0≤α<1)的值,並指出達到此值的極值函數的一切係數都是實數,而且極值函數只有一個。本篇僅用變分法来建立他們的定理。惜缶指出使|a_n|達到最大值的函數(1.1),其映象區域的境界是一組伸展到無窮遠處的解析若當曲綫。謝缶和斯賓塞爾,戈魯辛分別證明對於|a_4|和|a_5|的極值區域,其境界綫只有一根。本篇對於|a_6|和|a_7|證明同樣的事實。證明是靠着如下的引理: In this paper, the polynomial of a complex variable s(=sx+iy) with real coefficients 本文图示复变数s(=x+iy)的实系数多项式K=f(s)≡a_0s~n+a_1s~(n-1)+……+a_(n-1)s+a_nK是实参数,因此上式的图示表为(x,iy,K)中的一集空间曲线.这曲线在三个坐标平面上的投影就是本文图示的内客.在(x,iy)上的投影就是根轨迹.不论n=2m+1或n=2m+2,根轨迹方程都是y~2的m次方程.(K,x)图线除了包含实曲线K_r=f(x)以外,尚包含复根的实数部随K变化的曲线,这是新增的曲线.(K,x)曲线对判别系统的绝对和相对稳定性是很有用的.(K,iy)曲线对控制系统来说,表示放大K和自然频率ω(≡y)的关系曲线.这三幅图线可应用于方程式论和工程控制论. The well-known example of an equation with real coefficients without solution was given by F.Trèves in 1962. i.e. the operator of the 4th order ZZZZ is 《without solution》. In this paper we first have discussed some properties of the multidimensional operator of the 4th order △_k~2+n~2T~2(=sum from i,k=1 to n Z_j _j _k Z_k). Further, we have in troduced the concept of generalized Cauchy-Szeg kernel, have pointed out the existence of principal values of generalized singular Cauchy-Szeg integral, and the... The well-known example of an equation with real coefficients without solution was given by F.Trèves in 1962. i.e. the operator of the 4th order ZZZZ is 《without solution》. In this paper we first have discussed some properties of the multidimensional operator of the 4th order △_k~2+n~2T~2(=sum from i,k=1 to n Z_j _j _k Z_k). Further, we have in troduced the concept of generalized Cauchy-Szeg kernel, have pointed out the existence of principal values of generalized singular Cauchy-Szeg integral, and the connections between the principal values and boundary values of generalized Cauchy-Szeg integral. We have found "fundamental solution" of the operator △_k~2+n~2T~2, thus have extended the results of reference. At last, for pluriharmonic functions we have given some necessary conditions with relation to this operator, have obteined an orthogonal decomposition different from the orthogonal decomposition given by J.J. kohn. 1062年,F. Treves给出了具实系数的方程无解的著名例子(6),用经典方法证明方程无解将是困难的,若在乘积空间Cn×R((?)R~(2n+1)定义一个群的结构,即所谓Heisenbery群H_n,则Treve~S方程在H_1上化为ZZu=f的形式,其中Z是Lewy的不可解算子,于是该方程的不可解性立即得知,1977年G. Laville从J. J. Kohn, E. M. Stein等人的工作出发,在H_1上求得Treves方程的“基本解”。 本文首先讨论n次Heisenberg群上多维四阶算子△_K~2+n~2T~2的一些性质,随后引入广义Cauchy—Szeg核的概念,指出了广义Cauchy—Szeg奇异积分主值的存在性及其与积分边界值的关系,在H_n上求得该多维四阶算子的“基本解”,从而推广文献的结果。最后给出联系于这一算子的关于H_n上多调和(Pluriharmonic)函数的几个必要条件,特别,对于多调和函数得到一个不同于J.J.kohn的正交分解式。 << 更多相关文摘 相关查询

 CNKI小工具 在英文学术搜索中查有关real coefficient的内容 在知识搜索中查有关real coefficient的内容 在数字搜索中查有关real coefficient的内容 在概念知识元中查有关real coefficient的内容 在学术趋势中查有关real coefficient的内容

 CNKI主页 |  设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索 2008 CNKI－中国知网 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社