助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   sparse bayesian learning 的翻译结果: 查询用时:0.033秒
图标索引 在分类学科中查询
所有学科
更多类别查询

图标索引 历史查询
 

sparse bayesian learning
相关语句
  稀疏贝叶斯学习
     Combining sparse Bayesian learning with the principle of the support vector tracking(SVT), the relevance vector tracking (RVT) is presented.
     结合稀疏贝叶斯学习方法和支持向量跟踪(SVT)原理,提出了相关向量跟踪(RVT)。
     Combining sparse Bayesian learning with the principle of the support vector tracking(SVT),the relevance vector tracking (RVT) is presented.
     结合稀疏贝叶斯学习方法和支持向量跟踪(SVT)原理,提出了相关向量跟踪(RVT)。
短句来源
     The Sparse Bayesian Learning Based Revelance Vector Tracking
     基于稀疏贝叶斯学习的相关向量跟踪
短句来源
     Based on a rank-1 update, we propose Sparse Bayesian Learning Algorithm (SBLA), which has low complexity and high sparseness, thus being very suitable for large-scale problems.
     基于秩-1更新,提出了稀疏贝叶斯学习算法(SBLA)。 该算法具有较低的计算复杂度和较高的稀疏性,从而适合于求解大规模问题。
短句来源
  相似匹配句对
     Sparse Bayesian and Its Application to Time Series Forecasting
     稀疏贝叶斯及其在时间序列预测中的应用
短句来源
     The Sparse Bayesian Learning Based Revelance Vector Tracking
     基于稀疏贝叶斯学习的相关向量跟踪
短句来源
     Vehicle Model Recognition System Based on Sparse Bayesian Classification
     基于稀疏贝叶斯分类器的汽车车型识别
短句来源
     ve Bayesian.
     ve Bayesian的贝叶斯网络的模型。
短句来源
     Research on Bayesian Network
     贝叶斯网络研究
短句来源
查询“sparse bayesian learning”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
没有找到相关例句


Combining sparse Bayesian learning with the principle of the support vector tracking(SVT),the relevance vector tracking (RVT) is presented.Because of the matching between the candidated image patch and the prior knowledge,it need not the template updating.And the process time for each frame of the RVT's is faster than the SVT's by reason of the more sparse property of the former.In addition,the gray histogram character is adopted and the motion prediction and the size-alterable sampling methods are...

Combining sparse Bayesian learning with the principle of the support vector tracking(SVT),the relevance vector tracking (RVT) is presented.Because of the matching between the candidated image patch and the prior knowledge,it need not the template updating.And the process time for each frame of the RVT's is faster than the SVT's by reason of the more sparse property of the former.In addition,the gray histogram character is adopted and the motion prediction and the size-alterable sampling methods are used to solve such a matching tracking problem that the size of the object is updated consecutively due to the motion.The above property and the methods have been confirmed in the experiment.

结合稀疏贝叶斯学习方法和支持向量跟踪(SVT)原理,提出了相关向量跟踪(RVT)。由于跟踪系统事先学习到了目标的“知识”,故匹配发生在候选图像块与先验知识之间,而不必考虑模板更新。相关向量有比支持向量更稀疏的性能,所以相关向量跟踪比支持向量跟踪有更快的帧处理速度。另外,为了解决由于运动导致目标尺寸发生变化的匹配跟踪问题,采用了灰度真方图特征,引入了运动预测和变尺寸采样的方法。上述性能和方法在实验中得到了证实。

>=Combining sparse Bayesian learning with the principle of the support vector tracking(SVT), the relevance vector tracking (RVT) is presented. Because of the matching between the candidated image patch and the prior knowledge, it need not the template updating. And the process time for each frame of the RVT's is faster than the SVT's by reason of the more sparse property of the former. In addition, the gray histogram character is adopted and the motion prediction and the size-alterable sampling methods...

>=Combining sparse Bayesian learning with the principle of the support vector tracking(SVT), the relevance vector tracking (RVT) is presented. Because of the matching between the candidated image patch and the prior knowledge, it need not the template updating. And the process time for each frame of the RVT's is faster than the SVT's by reason of the more sparse property of the former. In addition, the gray histogram character is adopted and the motion prediction and the size-alterable sampling methods are used to solve such a matching tracking problem that the size of the object is updated consecutively due to the motion. The above property and the methods have been confirmed in the experiment.

结合稀疏贝叶斯学习方法和支持向量跟踪(SVT)原理,提出了相关向量跟踪(RVT)。由于跟踪系统事先学习到了目标的“知识”,故匹配发生在候选图像块与先验知识之间,而不必考虑模板更新。相关向量有比支持向量更稀疏的性能,所以相关向量跟踪比支持向量跟踪有更快的帧处理速度。另外,为了解决由于运动导致目标尺寸发生变化的匹配跟踪问题,采用了灰度真方图特征,引入了运动预测和变尺寸采样的方法。上述性能和方法在实验中得到了证实。

 
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关sparse bayesian learning的内容
在知识搜索中查有关sparse bayesian learning的内容
在数字搜索中查有关sparse bayesian learning的内容
在概念知识元中查有关sparse bayesian learning的内容
在学术趋势中查有关sparse bayesian learning的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社