助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   fault condition identification 的翻译结果: 查询用时:0.031秒
图标索引 在分类学科中查询
所有学科
更多类别查询

图标索引 历史查询
 

fault condition identification
相关语句
  故障状态识别
     Kernel principal component analysis(KPCA) is capable of extracting nonlinear features from fault signals,thus applied to fault condition identification.
     核函数主元分析KPCA(kernel princ ipal component analysis)能够提取机械故障信号的非线性特征,可以应用于机械故障状态识别
短句来源
  相似匹配句对
     What is the fault?
     罪过是什么?
短句来源
     fault inference;
     第二种是“过错推定说” ;
短句来源
     The indices for preliminary fault identification are presented.
     提出了用于故障初判断的指标;
短句来源
查询“fault condition identification”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
没有找到相关例句


Kernel principal component analysis(KPCA) is capable of extracting nonlinear features from fault signals,thus applied to fault condition identification.But KPCA is an unsupervised feature extraction method and cannot make use of class information of fault signals.A kernel K-L transformation method proposed in the paper can extract discrepant information on each class mean vector and variance vector,and the classification effects of the features extracted are better.In a gear fault diagnosis...

Kernel principal component analysis(KPCA) is capable of extracting nonlinear features from fault signals,thus applied to fault condition identification.But KPCA is an unsupervised feature extraction method and cannot make use of class information of fault signals.A kernel K-L transformation method proposed in the paper can extract discrepant information on each class mean vector and variance vector,and the classification effects of the features extracted are better.In a gear fault diagnosis experiment,kernel K-L Transformation was applied to extracting nonlinear features from fault features.An experiment shows kernel K-L Transformation is more effective for fault identification than KPCA.

核函数主元分析KPCA(kernel princ ipal component analysis)能够提取机械故障信号的非线性特征,可以应用于机械故障状态识别。但是KPCA是一种无监督的特征提取方法,不能利用故障信号中的类别信息。本文介绍了一种核最优K-L变换,它可以充分利用类别信息,它能够提取类平均向量和方差向量中的判别信息,使提取的特征分类效果更好。在齿轮故障诊断实验中,采用核最优K-L变换提取故障信号的非线性特征,实验结果表明核最优K-L变换相比KPCA故障识别结果更为理想。

 
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关fault condition identification的内容
在知识搜索中查有关fault condition identification的内容
在数字搜索中查有关fault condition identification的内容
在概念知识元中查有关fault condition identification的内容
在学术趋势中查有关fault condition identification的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社