全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多

 burst error-correcting 的翻译结果: 查询用时：0.196秒
 在分类学科中查询 所有学科 更多类别查询

 历史查询

 burst error-correcting 突发错误纠错(2)
 突发错误纠错
 Rate 2/3 Majority Logic Decodable Binary Burst Error-correcting Codes 码率为2／3的大数逻辑可译二进制突发错误纠错码 短句来源 A new kind of rate 2/3 majority logic decodable binary burst error-correcting code isconstructed using the method of majority logic decodable binary burst error-correcting codeof constructing rate 1/2. This code can correct all the error patterns with quasicyclic bursterrors whose burst error length is less than or equal to b(b=[3(m-1+h)/(12+h)],whereh=[(m-1)_12/12]). The general method for constructing this kind of error-correcting codewith a different rate is discussed. 采用构造码率为1／2的大数逻辑可译二进制突发错误纠错码的方法，提出了构造码率为2／3的（3m，2m）大数逻辑可译二进制突发错误纠错码，该码能够纠正所有长度小于等于b（6＝［3（m－1＋h）／（12＋h）］，其中h＝［（m－1）12／12］）的闭环突发错误模式，并由此得出构造此类码的一般方法 短句来源
 “burst error-correcting”译为未确定词的双语例句
 The Extended Fire Single Unidirectional Burst Error-Correcting/All Unidirectional Error-Detecting Codes 扩展Fire单个单向突发错误纠正／全部单向错误检测码的构造 短句来源 The necessary and sufficient conditions for the l-lUBEC/AUED (single l length Unidirectional Burst Error-Correcting/All Unidirectional Error Detecting) codes and the lower bound of the check bits of the proposed codes are presented. 给出了构造1－lUBEC／AUED（单个单向突发错误纠正／全部单向错误检测）码的充分必要条件和建议的1－lUBEC／AUED码校验位的下限； 将纠单个突发错误Fire码进行扩展，得到了扩展Fire1－lUBEC／AUED码； 短句来源
 相似匹配句对
 An Effective Method of Correcting Burst Error 一种纠突发错误的有效方法 短句来源 Burst-Error-Correcting Capabilites of Extending Reversible Goppa Codes 扩展可逆Goppa码的纠突发能力 短句来源 Error-Correcting Mechanism of Bluetooth 蓝牙的纠错机制 短句来源 Error correcting ruler of inductosyn 感应同步器误差修正尺 短句来源 TERNARY ERROR CORRECTING CODES 三值纠错码 短句来源

我想查看译文中含有：的双语例句
 没有找到相关例句
 A proof is presented for the existence of the optimum burst-error-correcting irreducible Goppa codes whose burst-error-correcting capabilities arbitrarily approach the Wyner-Ash bound and Sharma-Dass bound for very large n. On the basis of this result, the asymptote of the burst-error-correcting on these irreducible Goppa codes is discussed. The result is that the most parts of the irreducible Goppa codes over GF(qm) have the burst-correcting capabilities n-k-nε/2≤b≤n-k/2,... A proof is presented for the existence of the optimum burst-error-correcting irreducible Goppa codes whose burst-error-correcting capabilities arbitrarily approach the Wyner-Ash bound and Sharma-Dass bound for very large n. On the basis of this result, the asymptote of the burst-error-correcting on these irreducible Goppa codes is discussed. The result is that the most parts of the irreducible Goppa codes over GF(qm) have the burst-correcting capabilities n-k-nε/2≤b≤n-k/2, i. e. there are irreducible Goppa codes over GF (qm), whoseburst-correcting capabilities are able to approach the Wyner-Ash bound, but the asymptote of the burst-correcting capabilities for these Goppa codes is no good, i. e. b/n may possibly approach zero, when n→∞, and R remains constant. 本文证明了n充分大时,不仅存在有任意接近Sharma-Dass限的纠突发错误既约Goppa码,而且存在有任意接近Wyner-Ash限的最佳纠突发错误Goppa码,并且讨论了这类码的纠突发错误能力的渐近性。 The relation between the burst-error correctiog ability of the BCH codes and the roots of the BCH codes has not been solved well till now. A lower bound on the burst-error correcting ability of the usual BCH codes over GF(q) is presented in this paper. It is proved that the upper and lower bounds on the burst-error correcting ability b of the BCH codes over GF(q) (q=prime or power of prime) are d-2≤b≤[(n-k)/2] (Where [x] denotes the integer part of x). Thus the relation between b and roots... The relation between the burst-error correctiog ability of the BCH codes and the roots of the BCH codes has not been solved well till now. A lower bound on the burst-error correcting ability of the usual BCH codes over GF(q) is presented in this paper. It is proved that the upper and lower bounds on the burst-error correcting ability b of the BCH codes over GF(q) (q=prime or power of prime) are d-2≤b≤[(n-k)/2] (Where [x] denotes the integer part of x). Thus the relation between b and roots of the codes in derived for the first time. 循环码的根与纠突发错误能力之间的关系一直未能很好解决。本文证明了GF(q)上BCH码纠突发能力b的上、下限为:d-2≤b≤[(n-k)/2]。从而首次给出了码的根与纠突发能力之间的关系,并提供了一个构造纠突发错误循环码的极为简便和实用的新方法。 Upper and lower bounds on the burst-error-correcting capabilities of extending reversible Goppa Codes are given in this paper. 本文给出了扩展可逆Goppa码纠突发能力的上、下限。 << 更多相关文摘
 相关查询

 CNKI小工具 在英文学术搜索中查有关burst error-correcting的内容 在知识搜索中查有关burst error-correcting的内容 在数字搜索中查有关burst error-correcting的内容 在概念知识元中查有关burst error-correcting的内容 在学术趋势中查有关burst error-correcting的内容

 CNKI主页 |  设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
2008 CNKI－中国知网

2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社