助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   burst error-correcting 的翻译结果: 查询用时:0.196秒
图标索引 在分类学科中查询
所有学科
更多类别查询

图标索引 历史查询
 

burst error-correcting
相关语句
  突发错误纠错
     Rate 2/3 Majority Logic Decodable Binary Burst Error-correcting Codes
     码率为2/3的大数逻辑可译二进制突发错误纠错
短句来源
     A new kind of rate 2/3 majority logic decodable binary burst error-correcting code isconstructed using the method of majority logic decodable binary burst error-correcting codeof constructing rate 1/2. This code can correct all the error patterns with quasicyclic bursterrors whose burst error length is less than or equal to b(b=[3(m-1+h)/(12+h)],whereh=[(m-1)_12/12]). The general method for constructing this kind of error-correcting codewith a different rate is discussed.
     采用构造码率为1/2的大数逻辑可译二进制突发错误纠错码的方法,提出了构造码率为2/3的(3m,2m)大数逻辑可译二进制突发错误纠错码,该码能够纠正所有长度小于等于b(6=[3(m-1+h)/(12+h)],其中h=[(m-1)12/12])的闭环突发错误模式,并由此得出构造此类码的一般方法
短句来源
  “burst error-correcting”译为未确定词的双语例句
     The Extended Fire Single Unidirectional Burst Error-Correcting/All Unidirectional Error-Detecting Codes
     扩展Fire单个单向突发错误纠正/全部单向错误检测码的构造
短句来源
     The necessary and sufficient conditions for the l-lUBEC/AUED (single l length Unidirectional Burst Error-Correcting/All Unidirectional Error Detecting) codes and the lower bound of the check bits of the proposed codes are presented.
     给出了构造1-lUBEC/AUED(单个单向突发错误纠正/全部单向错误检测)码的充分必要条件和建议的1-lUBEC/AUED码校验位的下限; 将纠单个突发错误Fire码进行扩展,得到了扩展Fire1-lUBEC/AUED码;
短句来源
  相似匹配句对
     An Effective Method of Correcting Burst Error
     一种纠突发错误的有效方法
短句来源
     Burst-Error-Correcting Capabilites of Extending Reversible Goppa Codes
     扩展可逆Goppa码的纠突发能力
短句来源
     Error-Correcting Mechanism of Bluetooth
     蓝牙的纠错机制
短句来源
     Error correcting ruler of inductosyn
     感应同步器误差修正尺
短句来源
     TERNARY ERROR CORRECTING CODES
     三值纠错码
短句来源
查询“burst error-correcting”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
没有找到相关例句


A proof is presented for the existence of the optimum burst-error-correcting irreducible Goppa codes whose burst-error-correcting capabilities arbitrarily approach the Wyner-Ash bound and Sharma-Dass bound for very large n. On the basis of this result, the asymptote of the burst-error-correcting on these irreducible Goppa codes is discussed. The result is that the most parts of the irreducible Goppa codes over GF(qm) have the burst-correcting capabilities n-k-nε/2≤b≤n-k/2,...

A proof is presented for the existence of the optimum burst-error-correcting irreducible Goppa codes whose burst-error-correcting capabilities arbitrarily approach the Wyner-Ash bound and Sharma-Dass bound for very large n. On the basis of this result, the asymptote of the burst-error-correcting on these irreducible Goppa codes is discussed. The result is that the most parts of the irreducible Goppa codes over GF(qm) have the burst-correcting capabilities n-k-nε/2≤b≤n-k/2, i. e. there are irreducible Goppa codes over GF (qm), whoseburst-correcting capabilities are able to approach the Wyner-Ash bound, but the asymptote of the burst-correcting capabilities for these Goppa codes is no good, i. e. b/n may possibly approach zero, when n→∞, and R remains constant.

本文证明了n充分大时,不仅存在有任意接近Sharma-Dass限的纠突发错误既约Goppa码,而且存在有任意接近Wyner-Ash限的最佳纠突发错误Goppa码,并且讨论了这类码的纠突发错误能力的渐近性。

The relation between the burst-error correctiog ability of the BCH codes and the roots of the BCH codes has not been solved well till now. A lower bound on the burst-error correcting ability of the usual BCH codes over GF(q) is presented in this paper. It is proved that the upper and lower bounds on the burst-error correcting ability b of the BCH codes over GF(q) (q=prime or power of prime) are d-2≤b≤[(n-k)/2] (Where [x] denotes the integer part of x). Thus the relation between b and roots...

The relation between the burst-error correctiog ability of the BCH codes and the roots of the BCH codes has not been solved well till now. A lower bound on the burst-error correcting ability of the usual BCH codes over GF(q) is presented in this paper. It is proved that the upper and lower bounds on the burst-error correcting ability b of the BCH codes over GF(q) (q=prime or power of prime) are d-2≤b≤[(n-k)/2] (Where [x] denotes the integer part of x). Thus the relation between b and roots of the codes in derived for the first time.

循环码的根与纠突发错误能力之间的关系一直未能很好解决。本文证明了GF(q)上BCH码纠突发能力b的上、下限为:d-2≤b≤[(n-k)/2]。从而首次给出了码的根与纠突发能力之间的关系,并提供了一个构造纠突发错误循环码的极为简便和实用的新方法。

Upper and lower bounds on the burst-error-correcting capabilities of extending reversible Goppa Codes are given in this paper.

本文给出了扩展可逆Goppa码纠突发能力的上、下限。

 
<< 更多相关文摘    
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关burst error-correcting的内容
在知识搜索中查有关burst error-correcting的内容
在数字搜索中查有关burst error-correcting的内容
在概念知识元中查有关burst error-correcting的内容
在学术趋势中查有关burst error-correcting的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社