助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   mixed global optimization algorithm 的翻译结果: 查询用时:0.163秒
图标索引 在分类学科中查询
所有学科
更多类别查询

图标索引 历史查询
 

mixed global optimization algorithm
相关语句
  混合全局优化算法
     A mixed global optimization algorithm (MGOA) for packing problems
     面向布局问题求解的混合全局优化算法研究
短句来源
     This paper, combining a heuristic random searching strategy with local optimal algorithm, proposes and develops a composite algorithm named Mixed Global Optimization Algorithm (MGOA) to overcome the difficulties.
     本文将启发式随机搜索策略和局部优化算法相结合 ,构造了混合全局优化算法 (MGOA)来解决这一困难。
短句来源
  “mixed global optimization algorithm”译为未确定词的双语例句
     A Mixed Global Optimization Algorithm and Its Application in Packing
     一种混合全局寻优算法及其在布局中的应用
短句来源
     This paper proposes combining a heuristic random searching strategy with a local optimization algorithm, and names it Mixed Global Optimization Algorithm (MGOA) to overcome the difficulties.
     文中将启发式随机搜索策略和局部优化算法相结合 ,构造混合全局寻优算法 .
短句来源
  相似匹配句对
     GLOBAL OPTIMIZATION OF INTEGER AND MIXED PROGRAMMING
     整规划和混合规划的总极值问题
短句来源
     Global optimization of mixed fixed-structure controllers
     固定结构混合H_2/H_∞控制器参数的全局优化
短句来源
     Mixed Graph Based Global Wiring Refinement
     基于混合图的总体布线调整
短句来源
     Global Stability of Solutions for Mixed Bose-Einstein Condensates
     混合Bose-Einstein凝聚的解的整体稳定性
短句来源
     A Mixed Global Optimization Algorithm and Its Application in Packing
     一种混合全局寻优算法及其在布局中的应用
短句来源
查询“mixed global optimization algorithm”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
没有找到相关例句


Packing problems are categorized as NP complete. Traditional optimization methods have difficulties to deal with such problems effectively. Recently, genetic algorithms (GA) and simulation annealing algorithms (SAA) were resorted to, but their efficiency to locate a precise result was not quite satisfactory. This paper proposes combining a heuristic random searching strategy with a local optimization algorithm, and names it Mixed Global Optimization Algorithm (MGOA) to...

Packing problems are categorized as NP complete. Traditional optimization methods have difficulties to deal with such problems effectively. Recently, genetic algorithms (GA) and simulation annealing algorithms (SAA) were resorted to, but their efficiency to locate a precise result was not quite satisfactory. This paper proposes combining a heuristic random searching strategy with a local optimization algorithm, and names it Mixed Global Optimization Algorithm (MGOA) to overcome the difficulties. Multi object optimization model is formulated on a simplified satellite cabin packing problem, and taking its known optimal solution as the criteria of evaluation, MGOA is superior to the Multiplier Algorithm and an Improved GA in term of solution quality and efficiency. Therefore, the proposed MGOA has shown some potential to deal with packing problems with good expectation.

布局问题是 NP完全问题 ,传统的优化算法很难求得全局最优解 ,遗传算法和模拟退火算法等的随机搜索算法的求解精度和效率不能令人满意 .文中将启发式随机搜索策略和局部优化算法相结合 ,构造混合全局寻优算法 .以旋转卫星舱布局问题的简化模型为背景 ,建立了多目标优化的数学模型 ,通过一已知最优解的布局算例与遗传算法和乘子法的计算结果比较 ,该算法求解的质量和效率更优 ,表明此算法在布局优化中具有应用潜力

Packing problems are categorized as NP-complete. The traditional optimization methods have difficulties in dealing with such problems effectively due to the nature of the ill-conditioned functions of the problems. Genetic Algorithms (GA) and Simulation Annealing Algorithms (SAA) have shown some promising for global optimization, but their efficiency to locate a precise result are not quite satisfied. This paper, combining a heuristic random searching strategy with local optimal...

Packing problems are categorized as NP-complete. The traditional optimization methods have difficulties in dealing with such problems effectively due to the nature of the ill-conditioned functions of the problems. Genetic Algorithms (GA) and Simulation Annealing Algorithms (SAA) have shown some promising for global optimization, but their efficiency to locate a precise result are not quite satisfied. This paper, combining a heuristic random searching strategy with local optimal algorithm, proposes and develops a composite algorithm named Mixed Global Optimization Algorithm (MGOA) to overcome the difficulties. By comparison with an original GA and SAA and a Complex Method on some testing functions, MGOA shows very good global results in terms of high precision and efficiency. A multi-object optimization model is formulated on simplified satellite cabin packing problem. By comparison on a case of such packing problem with known optimal solution, MGOA is superior to the Multiplier Algorithm and an Improved GA in term of solution quality and efficiency. Therefore, the proposed MGOA has shown some potential to deal with packing problems with good expectation.

布局问题属于 NP完全问题。由于布局函数的病态性状 ,传统的优化算法很难解决此问题。遗传算法、模拟退火算法等对全局优化展示了一定的前景 ,但是它们的求解精度和效率不能令人满意。本文将启发式随机搜索策略和局部优化算法相结合 ,构造了混合全局优化算法 (MGOA)来解决这一困难。通过典型测试函数与经典遗传算法 ,模拟退火算法 ,复合形法进行比较验算 ,表明该算法具有优良的求解质量和较好的求解效率 ;并以旋转卫星舱布局的简化模型为背景 ,建立多目标优化数学模型 ,通过一个已知最优解的布局算例与遗传算法和乘子法的计算结果比较 ,该算法求解的质量和效率更优。表明此算法在布局优化中具有应用潜力。

 
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关mixed global optimization algorithm的内容
在知识搜索中查有关mixed global optimization algorithm的内容
在数字搜索中查有关mixed global optimization algorithm的内容
在概念知识元中查有关mixed global optimization algorithm的内容
在学术趋势中查有关mixed global optimization algorithm的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社