助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   central extensions 的翻译结果: 查询用时:0.208秒
图标索引 在分类学科中查询
所有学科
数学
更多类别查询

图标索引 历史查询
 

central extensions
相关语句
  中心扩张
     ON CENTRAL EXTENSIONS OF GROUPS ~2G_2(K)
     群~2G_2(K)的中心扩张(英文)
短句来源
     Central Extensions of the Lie Algebra G 2 over a Field Characteristic 2
     特征2李代数G_2的中心扩张
短句来源
     One - dimensional Central Extensions for Variations of G_2 of Characteristic 2
     特征2李代数G_2变形的中心扩张
短句来源
     The Central Extensions of Simple Lie Algebra W(Z,Z)
     单李代数W(Z,Z)的中心扩张
短句来源
     In this paper,the author constructs the universal central extensions ofgroups ~2G2(K) and obtains the schur multiplier of the groups.
     构造了2G_2(K)的泛中心扩张,当K是Z_3的代数扩域时,且|K|>3,则其Schur乘子是平凡的。
短句来源
更多       
  “central extensions”译为未确定词的双语例句
     In the chapter 3, we construct the Steinberg Leibniz algebra and Steinberg unitary Leibniz algebra and prove that they are universal central extensions of the special linear matrix Leibniz algebra si (n, D) and the elementary matrix Leibniz algebra eul(n, D, - ,r) over an associative dialgebra D respectively (n > 3).
     (n,A)已经被很多文章研究.在第3章,给定单位结合对代数D,(n≥3),我们构造Steinberg Leibniz代数和Steinberg unitary Leibniz代数,证明它们分别是特殊线性矩阵Leibniz代数(?) (n,D)和初等矩阵Leibniz代数(?)
短句来源
     In this paper, we apply the concept of the generalized restricted Lie algebra to study the relation of the integral and central extensions of a Lie algebra with a triangular decomposition.
     本文将应用广义限制李代数的概念来研究具有三角分解李代数的积分元和中心扩张的关系.
短句来源
  相似匹配句对
     Central Normalizing Extensions
     中心正规扩张
短句来源
     AN EXTEND ON CENTRAL RADICAL EXTENSIONS
     中心根扩张的一个推广
短句来源
     central metal;
     中心金属;
短句来源
     Central conclusions :
     主要研究结论:
短句来源
     Lowen extensions.
     Lowen的推广.
短句来源
查询“central extensions”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
为了更好的帮助您理解掌握查询词或其译词在地道英语中的实际用法,我们为您准备了出自英文原文的大量英语例句,供您参考。
  central extensions
Some properties of weakly-central extensions for which the quotient group by the kernel is hypercentral are investigated.
      
Some central extensions by means of the quaternion group
      
We consider (anti-)Poisson superalgebras with a constant nondegenerate (anti)bracket realized on smooth Grassmann-valued functions with compact supports in ?n and find the deformations of these superalgebras and their central extensions.
      
On central extensions of an abelian group by using an abelian grout
      
Lifting of automorphisms and derivations of conformal Lie superalgebras to their central extensions
      
更多          


On condition that g(A) was a simple Lie algebra and G_v(K) (was) the Chevalley group over field K associated with finite dimensional irreducible g(A)-module V, Steinberg~([1]) gave a U. C. E. (universal central extension) for all G_v(K) in the ease of |K|>4 and (Φ,|K|)(?)(A_1,9).For affine Lie algebra g(A), Morita~([2]) gave a U. C. E. of a family of Chevalley groups F_v(A,K) associated with g(A) in char K=0.In this paper, we generalize Morita's result from char K=0 to char K(?)2 and (Φ, |K|)(?)(A_1,9),...

On condition that g(A) was a simple Lie algebra and G_v(K) (was) the Chevalley group over field K associated with finite dimensional irreducible g(A)-module V, Steinberg~([1]) gave a U. C. E. (universal central extension) for all G_v(K) in the ease of |K|>4 and (Φ,|K|)(?)(A_1,9).For affine Lie algebra g(A), Morita~([2]) gave a U. C. E. of a family of Chevalley groups F_v(A,K) associated with g(A) in char K=0.In this paper, we generalize Morita's result from char K=0 to char K(?)2 and (Φ, |K|)(?)(A_1,9), and give a U. C. E. for a certain family of Chevalley groups G~λ(K)~([3]) associated with g_K(A).

设g(A)是单李代数,G_v(K)是有限维不可约g(A)-模V相应的域K上Chevalley群。在K>4及(Φ,|K|)≠(A_1,9)时,Steinberg给出了所有G_v(K)的一个普遍中心扩张(简记为U.C.E.) 对仿射李代数g(?),当Char K=0,Morita给出了与g(?)相应的一族Chevalley群F_v((?),K)的U.C.E.本文将Morita的结果推广到CharK≠2及(Φ,K)≠(A_1,9),对Garland定义的一族Chevalley群G~λ(K),给出了它们的U.C.E.

Let R be a ring with 1 and with an automorphism group G of order n for Someinteger n,C the Center of R,and R~G={r∈R|σ(r)=r (?)σ∈G} the subring of fixedelements under G,C~G=R~G∩C.Under the Kanzaki hypothesis on R that R isAzumaya over C such that C is Galois over C~G with Galois group induced by andisomorphic with G,F.R.DeMeyer showed that(1)R~G is Azumaya over C~G,and(2)R is a Galois and central extension over R~G(that is,R is Galois and R=CR~G over R~G.([1] lemma 2)The main results of this paper showed...

Let R be a ring with 1 and with an automorphism group G of order n for Someinteger n,C the Center of R,and R~G={r∈R|σ(r)=r (?)σ∈G} the subring of fixedelements under G,C~G=R~G∩C.Under the Kanzaki hypothesis on R that R isAzumaya over C such that C is Galois over C~G with Galois group induced by andisomorphic with G,F.R.DeMeyer showed that(1)R~G is Azumaya over C~G,and(2)R is a Galois and central extension over R~G(that is,R is Galois and R=CR~G over R~G.([1] lemma 2)The main results of this paper showed that the converse of the above theoremis true.Moreover,from our proof,the condition that R~G is Azumaya over C~G canbe replaced by the condition that the crossed product △(R,G)is Azumaya overC~G.We also found a structure of the separable subalgebras of C[=U_1,…,U_n],where{U_i} is a standard free basis for △(R,G).

本文证明了Galois 扩张理论中F.R.DeMeyer 的一个定理的逆定理;并从证明的过程中可见,条件R~G 在C~G上是Azumaya 的可以换为交叉积Δ(R,G)在C~G 上是Azumaya 的.另外,还获得了C[U_1,…,U_n]的可分子代数的某种结构,这里的{U_i}是Δ(R,G)的标准自由基。

This paper shows a new symmetric transformation-C transformation in super principal chiral model and discover an infinite dimensional Lie algebra related to the Virasoro algebra without central extension. By using the Riemann-Hilbert transformation. The physical origination of C transformation is discussed.

我们在超主手征场模型中找到了一种新的对称变换——C变换,发现在这种变换下体系具有一个与没有中心项的Virasoro代数相关的无穷维李代数.利用Riemann-Hilbert变换,我们探讨了C变换的物理根源.

 
<< 更多相关文摘    
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关central extensions的内容
在知识搜索中查有关central extensions的内容
在数字搜索中查有关central extensions的内容
在概念知识元中查有关central extensions的内容
在学术趋势中查有关central extensions的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社