全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多

 positive constant 的翻译结果: 查询用时：0.126秒
 在分类学科中查询 所有学科 更多类别查询

 历史查询

 positive constant 正的常数(2)
 正的常数
 where C λ is a positive constant depending only on λ. 这里 Cλ是仅与λ有关的正的常数 . 短句来源 A positive constant was defined as the acceleration factor of the linear system, which could accelerate the convergence or divergence of this system so as to decrease the simulation time of the power system dynamics for transient stability analysis. 文中定义了一个正的常数为该线性系统的加速因了,可用来加快该线性系统的收敛或发散速度,以减少分析电力系统暂态稳定性时对系统进行仿真的时间。 短句来源
 “positive constant”译为未确定词的双语例句
 Meanwhile K_1 = K_2 =positive constant. 此时K_1=K_2=正常数。 短句来源 By using the fixed points theorem of twist map, the author proves that the biomathematical model of muscular blood vessel: x+B+Ax+γx 3=E cos ωt has at least one 2π /ω periodic solution under condition: B/2<1 where A, B, γ, E, ω are positive constant. 运用扭转映射的不动点定理 ,证明了肌型血管生物数学模型 x+Bx+Ax+γx3 =E cosωt,( B/ 2 <1 )至少存在一个 2 π/ ω周期解 ,其中 A,B,γ,E,ω都是正常数 短句来源 Theorem 1.2:Let {X_n, n ≥ 1} be a sequence of independent B-valued random el-ements,sequence {a_n, n ≥ 1} and sequence {b_n, n≥ 1} be positive constant sequences such that 0 < b_n ↑ ∞; 定理1.2:设{X_n,n≥1}是一列B值独立的随机变量,{a_n}和{b_n}是正的常数列,且0 短句来源 (4) 0T R |u(x,t,m)-u(x,t,m0)|2dxdt C*|m-m0|, in which m, m0 > 0 and C* is a positive constant; (4)∫_0~T∫_R｜u(x，t，m)-u(x，t，m_0)｜~2dxdt≤C~*｜m-m_0｜，其中m，m_0＞0，而C~*为一正常数； 短句来源 _1 = (A~T A +ρ∑)~(-1) A~T YC~T (CC~T)~(-1) , when A A is ill-conditioned, where p is a positive constant, ∑ is a positive definite matrix. _1=(A~TA+σ∑)~(-1)A~TYC~T(CC~T)~(-1)，其中ρ＞0为常数，∑为正定阵。 短句来源 更多
 相似匹配句对
 B is constant. B为常数。 短句来源 Submanifold with Positive Curvature of Constant Curved 常曲率空间中的正曲率子流形(英文) 短句来源 F(x) is the defined function . C is a constant and e is any positive number . 〕,其中F(x)就是本文中所定义的一个函数,C为常数,ε为任意正数,从而得到了一类推广的凸函数. 短句来源 oxidase positive; 氧化酶阳性； 短句来源 and positive familyhistory. x_9阳性家族史为智力低下的4个危险因素。 短句来源

我想查看译文中含有：的双语例句

 positive constant
 It is proved that in the rectangle, the function h satisfies the followingfunctional inequality: where c is an absolute positive constant. The problem is to find a positive constant L such that for any real sequence {μn}n∈? with |μn -λn| ≤δ >amp;lt;L, is also a frame for L2[-π, π]. Then after m=O(n) transactions from the initial value x0,x* can be got such that |f(x*)|>amp;lt;e-cm |f(x0)| by choosing suitable positive constant c. In the paper, this theorem is supplemented by the assertion that for x → + ∞ the upper limit of F″(x) is larger than a positive constant which depends only on {λk}. We study the Cauchy problem in the layer ΠT=?n×[0,T] for the equationut=cGΔut+Δ?(u), wherec is a positive constant and the function?(p) belongs toC1(?+) and has a nonnegative monotone non-decreasing derivative. 更多
 In this paper we consider the differential system of equations whereθ,y,z are k-,n-, m- vectors respectively; all functions in (1) ∈C(1);H F.and G are Lipschitzian in ,y,z with Lipschitz constant p for whereρ (δ,ε) 0 as , . Furthermore, where M is a positive constant. (ii)The linear systems (2) have the bounded quadratic forms with regular symmetric matrices and are positive definite. Under these conditions we have proved that the system(1) possesses an integral manifold defined by relations... In this paper we consider the differential system of equations whereθ,y,z are k-,n-, m- vectors respectively; all functions in (1) ∈C(1);H F.and G are Lipschitzian in ,y,z with Lipschitz constant p for whereρ (δ,ε) 0 as , . Furthermore, where M is a positive constant. (ii)The linear systems (2) have the bounded quadratic forms with regular symmetric matrices and are positive definite. Under these conditions we have proved that the system(1) possesses an integral manifold defined by relations of the form where and Y(t) and Z(t) are the fundamental matrices of (2). 考虑微分方程系（１）这里 θ，ｙ，z分别k-，ｎ-，m-向量。本文目的是指出在某些条件下（1）式具有积分流形．而（1）式的积分流形的存在性与它的第一线性接近方程系ｄｙ／ｄｔ＝Ａ（ｔ）ｙ及ｄｚ／ｄｔ＝Ｂ（ｔ）ｚ有密切关系，所以本文第一部分先讨论线性方程系的性质。作者认为这部分具有独立的意义。 主要的结果：假定（１）式满足下列的条件：均为正定二次型。二、（１）式属于当时均匀地成立。其中Ｍ为常数。那末（１）式存在积分流形 In this paper we prove the following theorem: Suppose that μ is a positive constant. Letwhereas n→∞. Then the ellipse E_uis the ellipse of convergence of the Legendre seriesLet f(z) be the sum of this series inside E_μ and we denote the complete analytic function generated by this series also by f(z).If f(z) is analytic at a point z_0 on E_μ, then this series converges at the point z_0.From this we deduce that if sum from n=0 to ∞ a_n P_n(z) diverges at a point z_0 on E_μ, then the point z_0 is a singular... In this paper we prove the following theorem: Suppose that μ is a positive constant. Letwhereas n→∞. Then the ellipse E_uis the ellipse of convergence of the Legendre seriesLet f(z) be the sum of this series inside E_μ and we denote the complete analytic function generated by this series also by f(z).If f(z) is analytic at a point z_0 on E_μ, then this series converges at the point z_0.From this we deduce that if sum from n=0 to ∞ a_n P_n(z) diverges at a point z_0 on E_μ, then the point z_0 is a singular point of f(z). 设μ为正常数。令■这里,当n→∞时,■则勒襄特级数sum from n=0 to ∞a_nP_n(z)=a_0+a_1P_1(z)+…+a_nP_n(z)+…以E_μ为其收歛椭圆。在E_μ内令这个级数的和为f(z),并用f(z)表示从它所产生的完全解析函数。如果f(z)在E_μ上—点z_0处解析,则sum from n=0 to ∞a_nP_n(z)在点z_0处收歛。从此即可推出:如果sum from n=0 to ∞a_nP_n(z)在E_μ上一点z_0处发散,则点z_0必为f(z)的奇点。 In theBull. American Mathematical Society 76 (70)976, Professor D. Suryanarayana pointed three problems in theory of numbers.If , where the asterisk in the product indicates that p runs through primes p≡1(mod4) evaluate lim a~2(x) log x?In this paper, using analytical methods, the author solved the first problem of D. Suryanarayana and proved the following Theorem.Theorem Let p denote the prime numbers and p≡1(mod4), thenandwhere, γ denotes the Euler constant and m>1 denotes any fixed Positive constant.... In theBull. American Mathematical Society 76 (70)976, Professor D. Suryanarayana pointed three problems in theory of numbers.If , where the asterisk in the product indicates that p runs through primes p≡1(mod4) evaluate lim a~2(x) log x?In this paper, using analytical methods, the author solved the first problem of D. Suryanarayana and proved the following Theorem.Theorem Let p denote the prime numbers and p≡1(mod4), thenandwhere, γ denotes the Euler constant and m>1 denotes any fixed Positive constant. 1970年,美国数学家D.Suryanarayana在“Bull.American Mathematial Society 76(70)”中曾经提出了三个问题。作者就其中的一个问题做了一些工作。现在,我们将D.Suryanarayana的第一个问题述于下。“设p为满足p≡1(mod4)的所有素数,若以α(x)表示乘积。试以初等方法研究α(x)的渐近形式。”本文作者用比较初等的方法对该问题给出了一个肯定的结论,并且解决了这个问题。即证明了下面的定理。定理设p为满足p≡1(mod 4)的全体素数,若以α(x)表示乘积则有。即其中γ为Euler常数,m为大于1且可取任意大的固定正数。 << 更多相关文摘
 相关查询

 CNKI小工具 在英文学术搜索中查有关positive constant的内容 在知识搜索中查有关positive constant的内容 在数字搜索中查有关positive constant的内容 在概念知识元中查有关positive constant的内容 在学术趋势中查有关positive constant的内容

 CNKI主页 |  设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
2008 CNKI－中国知网

2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社