助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   阶微分 在 数学 分类中 的翻译结果: 查询用时:0.069秒
图标索引 在分类学科中查询
所有学科
数学
自动化技术
机械工业
金属学及金属工艺
电信技术
计算机软件及计算机应用
水利水电工程
物理学
无线电电子学
更多类别查询

图标索引 历史查询
 

阶微分
相关语句
  first order differential
    ASYMPTOTIC EQUILIBRIUM AND PERIODIC BOUNDARY VALUE PROBLEMS OF FIRST ORDER DIFFERENTIAL EQUATIONS
    一阶微分方程的渐近平稳和周期边值问题
短句来源
    Monotone Iterative Technique for Initial Value Problems in First Order Differential Equations
    一阶微分方程初值问题的单调叠代术
短句来源
    The Calculation of the First Order Differential Sensitivity for Network
    网络一阶微分灵敏度的计算
短句来源
    Problems about the Integrating Factor of First Order Differential Equation
    关于一阶微分方程的积分因子问题
短句来源
    Unique Existence of the Solutions for the First Order Differential Equations in Banach Spaces
    Banach空间一阶微分方程解的存在唯一性
短句来源
更多       
  “阶微分”译为未确定词的双语例句
    THE PROBLEM OF BOUNDEDNESS OF SOLUTIONS OF LINEAR DIFFERENTAL EQUATION OF SECOND ORDER
    关于线性二阶微分方程有界解问题
短句来源
    THE BOUNDNESS OF SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS y"+A(t)y=0
    关于二阶微分方程y″+A(t)y=0的解的有界性
短句来源
    GEOMETRICAL PROPERTIES OF THE INTEGRAL SURFACES OF DIFFERENTIAL EQUATIONS OF THE FIRST ORDER IN THE COMPLEX DOMAIN
    复数域内一阶微分方程的积分曲面的几何性质
短句来源
    The Method of Matched Asymptotic, Expansions for the solution of a Non-Linear Second order Differential Equation
    求一类非线性二阶微分方程解的匹配渐近展开方法
短句来源
    NECESSARY AND SUFFICIENT CONDITIONS FOR GLOBAL ASYMPTOTIC STABILITY OF SECOND ORDER DIFFERENTIAL EQUATIONS
    二阶微分方程全局渐近稳定性的充要条件
短句来源
更多       
查询“阶微分”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
为了更好的帮助您理解掌握查询词或其译词在地道英语中的实际用法,我们为您准备了出自英文原文的大量英语例句,供您参考。
  first order differential
As the order is 1, the result here is simplified to that of first order differential equation.
      
The method used to derive the energy functions of nets from first order differential equations is valid for all first order continuous autonomous systems.
      
The applications of infinite systems of linear first order differential equations with 2L+1-term recursion formulas are discussed.
      
In this formulation the Schr?dinger equation is a system of two first order differential equations for two component wave functions.
      
On the oscillation of solutions of first order differential equations with deviating arguments
      
更多          


We consider the equation +p(x, , t)f(x)Φ()+p(t)g(x)h()=e(x, , t). or its equivalent form =y (E) =-p(x, y, t)f(x)Φ(y)-q(t)g(x)h(y)+e(x, y, t) under the following conditions: (1) f. Φ. q. g and h are continuous on the reals, p and e are continuous on t≥0, |x|<∞, ||<∞. (2) f(x)>0 for all x and xy(x)>0 for all x≠0. (3) h(x)>0 for all y and integral from n=0 to ∞ ydy/h(y)=∞. (4) Φ(y)/y>0 (y≠0), and integral from n=0 to a ydy/Φ(y)<∞ if Φ(y)/y|_y=0=0. (a: any finite real number). (5) 0<α_1≤p(x, , t)≤α_2, q(t)≤r, q(t)≥0,...

We consider the equation +p(x, , t)f(x)Φ()+p(t)g(x)h()=e(x, , t). or its equivalent form =y (E) =-p(x, y, t)f(x)Φ(y)-q(t)g(x)h(y)+e(x, y, t) under the following conditions: (1) f. Φ. q. g and h are continuous on the reals, p and e are continuous on t≥0, |x|<∞, ||<∞. (2) f(x)>0 for all x and xy(x)>0 for all x≠0. (3) h(x)>0 for all y and integral from n=0 to ∞ ydy/h(y)=∞. (4) Φ(y)/y>0 (y≠0), and integral from n=0 to a ydy/Φ(y)<∞ if Φ(y)/y|_y=0=0. (a: any finite real number). (5) 0<α_1≤p(x, , t)≤α_2, q(t)≤r, q(t)≥0, where α_1, α_2 and γ are constants. (6) |e(x, , t)|≤q(t), q(t) is sectionally continuous and integral from n=0 to ∞ q(t)dt=E(∞)<∞. (6') |e(x, , t)|≤q(t)||, q(t) is sectionally continuous and integral from n=0 to ∞ q(t)dt<∞. The following four main theorems are obtained. Ⅰ (Theorem 2) Suppose that e(x, , t)≡0 for all x, and t, and conditions (1)—(5) hold. Then the solution x=y=0 of (E) is globally asymptotically stable if and onlv if Ⅱ (Theorem 4) Suppose that h(y)≡1 and (Φ(y))/y>0 for all y, and suppose that conditions (1), (2), (5) and (6) hold. Then every solution (x(t), y(t)) of (E) approaches (0, 0) as t →+∞ if and only if (C) holds. Ⅲ (Theorem 5) Suppose that h(y)≡1 and (Φ(y))/y>0 for all y, and suppose that conditions (1), (2), (5) and (6') hold. Then the solution x=y=0 of (E) is globally asymptotically stable if and only if (C) holds. Ⅳ (Theorem 6) Suppose that e(x, , t)≡0 for all x, and t, and conditions (C), (1)—(4) hold, and suppose that (5') 0<α_1≤p(, x, t)≤P(t), q(t)≤r, q(t)≥0, where α_1 and γ are constants, and P(t) is sectionally continuous, and that for some coastant B and all t>0 the growth condition 1/t~2 integral from n=0 to t P(t)dt

在适当的条件下研究二阶微分方程χ+p(χ,χ,t)f(χ)Φ(χ)+q(t)g(χ)h(χ)=e(χ,χ,t) 及其特球方程的零解χ=χ=0为全局渐近稳定的或一切解及其导数均趋向于(0,0)的充要条件。并在具有无界阻尼的条件下,对p(χ,χ,t)给出一个增长条件,以保证其零解为全局渐近稳定或一切解及其导数均趋向于(0,0)。

We consider the equation x+p(x,x,t)f(x)Φ(x)+q(t)g(x)h(x)=e(x,x,t). or its equivalent form x=y (E) y=-p(x,y,t)f(x)Φ(y)-q(t)g(x)h(y)+e(x,y,t) under the following conditions: (1) f. Φ. q. g and h are continuous on the reals, p and e are continuous on t≥0, |x|<∞, |x|<∞. (2) f(x)>0 for all x and xg(x)>0 for all x≠0. (3) h(y)>0 for all y and ∫_0~∞(ydy/h(y))=∞. (4) Φ(y)/y>0 (y≠0), and ∫_0~α (ydy/Φ(y)<∞ if Φ(y)/y |_(y=0)=0. (a: any finite real number). (5) 0

We consider the equation x+p(x,x,t)f(x)Φ(x)+q(t)g(x)h(x)=e(x,x,t). or its equivalent form x=y (E) y=-p(x,y,t)f(x)Φ(y)-q(t)g(x)h(y)+e(x,y,t) under the following conditions: (1) f. Φ. q. g and h are continuous on the reals, p and e are continuous on t≥0, |x|<∞, |x|<∞. (2) f(x)>0 for all x and xg(x)>0 for all x≠0. (3) h(y)>0 for all y and ∫_0~∞(ydy/h(y))=∞. (4) Φ(y)/y>0 (y≠0), and ∫_0~α (ydy/Φ(y)<∞ if Φ(y)/y |_(y=0)=0. (a: any finite real number). (5) 00 for all y, and suppose that conditions (1), (2), (5) and (6) hold. Then every solution (x(t),y(t)) of (E) approaches (0,0) as t→+∞ if and only if (C) holds. Ⅲ (Theorem 5) Suppose that h(y)≡1 and Φ(y)/y>0 for all y, and suppose that conditions (1), (2), (5) and (6′) hold. Then the solution x=y=0 of (E) is globally asymptotically stable if and only if (C) holds. Ⅳ (Theorem 6) Suppose that e(x, x, t)≡0 for all x, x and t, and conditions (C), (1)—(4) hold, and suppose that (5′) 00 the growth condition j'P(t)dt

在适当的条件下研究二阶微分方程 x+p(x,x,t)f(x)Φ(x)+q(t)g(x)h(x)=e(x,x,t)及其特殊方程的零解x=x=0为全局渐近稳定的或一切解及其导数均趋向于(0,0)的充要条件。并在具有无界阻尼的条件下,对p(x,x,t)给出一个增长条件,以保证其零解为全局渐近稳定或一切解及其导数均趋向于(0,0)。

Introducing a displacement function Φ, the solution of the differential equation of motion in elasticity is then reduced as to determine such a displacement function Φ satisfying a six order differential equation. Therefore,the solution may be obtained by means of separation of variables and as a consequence the formulas of displacements and stress components are given in the presentation of cartesian coordinates. The constants in these formulas are determined according as the load-up condition of a rectangularly...

Introducing a displacement function Φ, the solution of the differential equation of motion in elasticity is then reduced as to determine such a displacement function Φ satisfying a six order differential equation. Therefore,the solution may be obtained by means of separation of variables and as a consequence the formulas of displacements and stress components are given in the presentation of cartesian coordinates. The constants in these formulas are determined according as the load-up condition of a rectangularly thick plate simply supported on which the periodic load acting distributively or concentra-tively. As for the frequency equation of vibration, it has been formulated according to the state that the surfaces of plate being free from loading. Illustrating with an example of square plate the fundamental frequencies of plates of various thickness are computed and compared with the results by engineering theory of thin plates.

本文从弹性力学运动微分方程出发,引入了一个位移函数φ_r把运动方程的求解问题变成找位移函数φ满足一个六阶微分方程,用分离变量法求得了方程用直角座标表示的解,从而求得了位移和应力的表达式。根据简支矩形厚板受分布的或集中的周期力作用的条件定出了各常数,又根据板面外载荷为零的条件建立了简支矩形厚板的自振频率方程式。以正方形板为例对不同厚度的板求得了基本频率,并与由工程理论所得的薄板振动公式计算结果作了比较。

 
<< 更多相关文摘    
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关阶微分的内容
在知识搜索中查有关阶微分的内容
在数字搜索中查有关阶微分的内容
在概念知识元中查有关阶微分的内容
在学术趋势中查有关阶微分的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社