助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   垂直 在 地质学 分类中 的翻译结果: 查询用时:0.01秒
图标索引 在分类学科中查询
所有学科
地质学
气象学
海洋学
物理学
力学
生物学
自然地理学和测绘学
环境科学与资源利用
机械工业
更多类别查询

图标索引 历史查询
 

垂直
    很抱歉,暂未找到该词条在当前类别下的译词。您可以查看在所有学科下的译词。
相关语句
  “垂直”译为未确定词的双语例句
    Kirchhoff integral migration of VSP data
    垂直地震剖面的KIRCHHOFF积分偏移
短句来源
    GRT migration of VSP data
    垂直地震剖面GRT偏移
短句来源
    Forward Modeling VSP by Finite Element Method
    垂直地震剖面的有限元正演模拟
短句来源
    A POSSIBLE MECHANISM OF THE DIFFERENCE OF THE RELATIONSHIP BETWEEN GRAVITY CHANGES AND CRUSTAL UPHEAVAL IN DIFFERENT AREAS
    不同区域地震前重力变化与垂直形变关系的差异性及其可能机制
短句来源
    DISCUSSION ON THE IMPEDANCE EQUIVALENT RESISTIVITY IN ELECTRO-MAGNETIC SOUNDING AND ITS CALCULATION
    电磁测深中阻抗等效电阻率的讨论及其算法——水平多层大地上垂直磁偶极子频率电磁测深
短句来源
更多       
查询“垂直”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
没有找到相关例句


Since the year 1886, the Dupuit-Forchheimer theory and formulas for gravityflows toward wells and galleries have been broadly used in all nations of theworld. In these formulas, assumptions are made for underground flows fromfarther distances in horizontal directions at a constant rate toward wells andgalleries. According to the author's analysis, these assumptions are not consistentwith the actual conditions of flow, hence the formulas obtained therefrom are notrational, and the employment of these formulas...

Since the year 1886, the Dupuit-Forchheimer theory and formulas for gravityflows toward wells and galleries have been broadly used in all nations of theworld. In these formulas, assumptions are made for underground flows fromfarther distances in horizontal directions at a constant rate toward wells andgalleries. According to the author's analysis, these assumptions are not consistentwith the actual conditions of flow, hence the formulas obtained therefrom are notrational, and the employment of these formulas to investigate the general effectof surface drop or well diametre upon yield is devoid of rational foundations. According to the author's analysis, the flows toward wells or galleries areactually supplied vertically by draining the stored water above the free surface inthe course of its descending and enlarging. As the drainage of gravity water fromthe pores of soil particles in order to reduce the water content to that of filmshells takes one to two days, as the capillary water columns are interconnectedand mutually supplied sidewise, this vertical supply of water may maintain quite along time, yet the flow may not be absolutely steady. As regards vertical supply of water with unsteady regimen, equations of freesurface for flow pattern near galleries are deduced, corresponding to the Boussinesqpartial differential equation. Besides, the author has derived simplified equationsfor computing flows into wells and galleries. The latter, in comparison with theDupuit-Forchheimer formulas, gives a higher yield, while the free surface curve isreasonably tangent to the horizontal water table at a point which moves fartheraway as time goes on. J. Kozeny first pointed out the phenomenon that the water depth in the groundon the wall will not be further lowered when it reaches one half of the depthbefore pumping. The author hereby proposes a theoretical proof of it on the basisof theorem of least work. Based upon these theories, formulas are proposed for maximum possible yieldof wells and galleries dug to horizontal impervious strata, to be used in prelimi-nary estimations for hydro-geological workers.

1886年以来,杜布义-福熙罕默(Dupuit-Forchheimer)的井流及沟流的理论与计算用公式被世界各国广泛地应用着。公式假设地下水从远处沿着水平方向以定率流向井内或沟内,按作者分析这种假设并不符合实际情况,因之所得公式也不合理,用这些公式来推论水位降落或井径对於出水率的影响也没有合理的凭据。作者推论,井流或沟流的水实际上是从水面线以上,在其降落并扩大的过程中,排除了存积的水,沿着直垂方向所供应着的。因为从土壤颗粒的空隙间排除重力水,使减为薄膜水,每需时一两天,而水面上的毛细管水又是横向贯通并互相接济着,所以垂直供水可以维持很久,而潜流也决不会绝对稳定。根据这垂直供水的不定汉条件引出了沟流的水面线公式,结果符合蒲薪奈斯克的偏微分方程式。另外,作者又拟具了简化的井流及沟流计算用公式。这些公式和杜氏-福氏公式比较,所得出水率较大,而水面线则合理地切於静水线,切点随着时程向远处移动。柯臣尼(J.Kozeny)最早指出井边地内水深不会低於静水深一半的现象,本文中作者根据最小工作定律试拟了理论的证明以支持之。根据这些理论,引出了从静水中抽水时井流、沟流最大可能出水率的公式,以供水文地质工...

1886年以来,杜布义-福熙罕默(Dupuit-Forchheimer)的井流及沟流的理论与计算用公式被世界各国广泛地应用着。公式假设地下水从远处沿着水平方向以定率流向井内或沟内,按作者分析这种假设并不符合实际情况,因之所得公式也不合理,用这些公式来推论水位降落或井径对於出水率的影响也没有合理的凭据。作者推论,井流或沟流的水实际上是从水面线以上,在其降落并扩大的过程中,排除了存积的水,沿着直垂方向所供应着的。因为从土壤颗粒的空隙间排除重力水,使减为薄膜水,每需时一两天,而水面上的毛细管水又是横向贯通并互相接济着,所以垂直供水可以维持很久,而潜流也决不会绝对稳定。根据这垂直供水的不定汉条件引出了沟流的水面线公式,结果符合蒲薪奈斯克的偏微分方程式。另外,作者又拟具了简化的井流及沟流计算用公式。这些公式和杜氏-福氏公式比较,所得出水率较大,而水面线则合理地切於静水线,切点随着时程向远处移动。柯臣尼(J.Kozeny)最早指出井边地内水深不会低於静水深一半的现象,本文中作者根据最小工作定律试拟了理论的证明以支持之。根据这些理论,引出了从静水中抽水时井流、沟流最大可能出水率的公式,以供水文地质工作者初步估算之用。

~~

本文敘述用三維液体—固体超声波模型試驗,来研究地震波在断层介貭中传播的动力学特性(波形,波的頻譜及振幅)和运动学特性,确定了所記录波的类型,討論了根据波的动力学特性来发現和追踪断层的基本准則。工作是在垂直于断层稜边的纵剖面上进行的。并探明了寻找断层时最佳剖面方向的选择(θ=60°—90°)。

It is proved, for the two-dimensional question, that the general expression of total intensity △T has the same form as the vertical intensity Z. There is a possibility to consider the anomaly curves △T as Z. Therefore by use of the Cauch-Riemann's condition in the theory of function of a complex variable we may from anomaly curves △T calculate its so called "negative harmonic conjugate function" () which is corresponding to the anomaly curves H. It is indicated that interpretation of the magnetic data may be...

It is proved, for the two-dimensional question, that the general expression of total intensity △T has the same form as the vertical intensity Z. There is a possibility to consider the anomaly curves △T as Z. Therefore by use of the Cauch-Riemann's condition in the theory of function of a complex variable we may from anomaly curves △T calculate its so called "negative harmonic conjugate function" () which is corresponding to the anomaly curves H. It is indicated that interpretation of the magnetic data may be facilitated by ussing () together with its original function △T. Two examples of application are given: 1) the calculation of the magnetic moment and its inclination for two-dimensional bodies from △T and AT; 2) downward analytical continuation of △T by use of values of △T and △T on the horizon of observation.

本文对于二度问题证明了总磁場强度△T与垂直磁場强度Z的一般表达式具有相同的形式,因此可以把△T异常曲线看成Z异常曲线,利用复变函数理论中的柯西-黎曼条件我们就可根据△T异常曲线计算出与H异常曲线相当的所谓△T的“负共轭调和函数”△T,文中指出了同时利用△T及其原函数△T将有助于磁测资料的解释工作,还举出了两个应用的例子:1)根据△T与△T计算二度体的磁矩及其倾角;2)利用观测水平上的△T及△T值将△T向下解析延拓。

 
<< 更多相关文摘    
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关垂直的内容
在知识搜索中查有关垂直的内容
在数字搜索中查有关垂直的内容
在概念知识元中查有关垂直的内容
在学术趋势中查有关垂直的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社