助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   垂直 在 建筑科学与工程 分类中 的翻译结果: 查询用时:0.01秒
图标索引 在分类学科中查询
所有学科
建筑科学与工程
气象学
海洋学
物理学
力学
生物学
自然地理学和测绘学
环境科学与资源利用
机械工业
更多类别查询

图标索引 历史查询
 

垂直
    很抱歉,暂未找到该词条在当前类别下的译词。您可以查看在所有学科下的译词。
相关语句
  “垂直”译为未确定词的双语例句
    Study of Bearing Capacity of Short Pile in Silty Fine Sand
    短桩在粉、细砂中的垂直及水平承载力的试验研究
短句来源
    After many projects for material system (concrete or steel) and structural system are analyzed, the final structural system which makes use of the longitude and woof of the sphere is chosen.
    对结构材料体系(钢筋混凝土、钢)和结构体系进行多方案比较分析后,选定利用完整建筑球壳的经纬线,构造出同时具备良好的承担垂直荷载和抗侧力的结构体系。
    The Improved Parallel Multi-component Model for the Nonlinear Seismic Response Analysis of RC Walls and Its Application
    钢筋混凝土剪力墙多垂直杆非线性单元模型的改进及其应用
短句来源
    AN IMPROVED MULTI-VERTICAL-TRUSS-ELEMENT MODEL OF SHEAR WALL AND ITS APPLICATION
    剪力墙多垂直杆单元模型的改进及应用
短句来源
    (2) Using the X-ray horizontal screw CT machine and the corresponding loading systems in the State Key Laboratory of Frozen Soil Engineering, the real-time CT uniaxial compression tests of two unsaturated jointed slate samples with different bedding distribution are conducted.
    (2)采用冻土工程国家重点实验室X射线螺旋卧式CT机及岩土专用加载装置,进行了含水平层理和垂直层理锦屏水电站非饱和板岩试样的CT试验,从细观层次解释了板岩水平层理试样与垂直层理试样破坏模式不同的机理,对其损伤演化过程进行了阶段性划分;
短句来源
更多       
查询“垂直”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
没有找到相关例句


It is pointed out in this paper that the following apparent discrepancies exist in Coulomb's Theory: (1) In any problem in mechanics, a force to be definite must have all the three factors involved under consideration. In Coulomb's Theory, however, the point of application of the soil reaction on the plane of sliding is somehow neglected, thus enabling the arbitrary designation of the obliquity of the earth pressure on the wall to be equal to the friction angle between the wall surface and soil. As a matter...

It is pointed out in this paper that the following apparent discrepancies exist in Coulomb's Theory: (1) In any problem in mechanics, a force to be definite must have all the three factors involved under consideration. In Coulomb's Theory, however, the point of application of the soil reaction on the plane of sliding is somehow neglected, thus enabling the arbitrary designation of the obliquity of the earth pressure on the wall to be equal to the friction angle between the wall surface and soil. As a matter of principle, the point of application should never be slighted while the obliquity of the earth pressure could only have a value that is compatible with the conditions for equilibrium. (2) If the point of application of the soil reaction is taken into account in the problem, the sliding wedge would only tend to slide either on the plane of sliding or on the surface of wall but not on both at the same time, thus frustrating the very conceptidn of sliding wedge upon which Coulomb's Theory is founded. (3) The above discrepancies arise from the fact that the shape of the surface of sliding should be curvilinear in order to make the wedge tend to slide as desired, while Coulomb, however, adopted a plane surface instead. (4) Coulomb, in finding the plane of sliding, made use of the maximum earth pressure on the wall (for active pressure), which refers to the different magnitudes of pressure corresponding to different assumed inclinations of the plane of sliding. But from the relation between the yield of wall and amount of pressure, this maximum value is really the minimum pressure on the wall, which it is the purpose of the theory to find. In engineering books, however, this terminology of maximum pressure has caused considerable confusion, with the result that what is really the minimum pressure is carelessly taken as the maximum design load for the wall. How can a minimum load be used in a design?This paper also attempts to clarify some contended points in Rankine's Theory: (1) It is claimed by Prof. Terzaghi that Rankine's Theory is only a fallacy because of the yield of wall and that of the soil mass on its bed. This charge is unjust as it can be compared with Coulomb's Theory in the same respect. (2) Some books declare that Rankine's Theory is good only for walls with vertical back, but it is proved in this paper that this is not so. (3) It is also generally believed that Rankine's Theory is applicable only to wall surfaces with no friction. This is likewise taken by this paper as unfounded and illustration is given whereby, in this regard, Rankine's Theory is even better than Coulomb's, because it contains no contradiction, as does Coulomb's.

本文從力學觀點對庫隆理論提出下列問題:(1)在解算力學問題時,每個力有三個因素都該同時考慮,但庫隆對土楔滑動面上土反力的施力點竟置之不理,因而才能對擋土墙上土壓力的傾斜角作一硬性假定,使它等於墙和土間的摩阻角,然而施力點是不能不管的,因而土壓力的傾斜角是不能離開平衡條件而被隨意指定的。(2)如果考慮了土反力的施力點,則土楔祇能在滑動面上,或在墙面上,有滑動的趨勢,而不能同時在兩個面上都有滑動的趨勢,因而庫隆的基本概念“滑動土楔”就站不住了。(3)問題關鍵在滑動面的形狀;如要使土楔在滑動面和墙面上同時有滑動趨勢,則滑動面必須是曲形面,然而庫隆採用了平直形的滑動面。(4)庫隆的土楔滑動面是從墙上最大的土壓力求出的(指主動壓力),這裏所謂“最大”是指適應各個滑動面的各個土壓力而言,但對適應墙在側傾時土壓力應有的變化來說,這個最大土壓力却正是墙上極限壓力的最小值。一般工程書籍,以為這土壓力既名為最大,就拿它來用作設計擋土墙的荷載,荷載如何能用最小的極限值呢?本文對朗金理論中的下列問題作了一些解釋:(1)朗金理論在擋土墙的位移問題上所受的限制,是和庫隆理論一樣的,竇薩基教授曾就此問題認為朗金理論是幻想,似乎是無根據的。...

本文從力學觀點對庫隆理論提出下列問題:(1)在解算力學問題時,每個力有三個因素都該同時考慮,但庫隆對土楔滑動面上土反力的施力點竟置之不理,因而才能對擋土墙上土壓力的傾斜角作一硬性假定,使它等於墙和土間的摩阻角,然而施力點是不能不管的,因而土壓力的傾斜角是不能離開平衡條件而被隨意指定的。(2)如果考慮了土反力的施力點,則土楔祇能在滑動面上,或在墙面上,有滑動的趨勢,而不能同時在兩個面上都有滑動的趨勢,因而庫隆的基本概念“滑動土楔”就站不住了。(3)問題關鍵在滑動面的形狀;如要使土楔在滑動面和墙面上同時有滑動趨勢,則滑動面必須是曲形面,然而庫隆採用了平直形的滑動面。(4)庫隆的土楔滑動面是從墙上最大的土壓力求出的(指主動壓力),這裏所謂“最大”是指適應各個滑動面的各個土壓力而言,但對適應墙在側傾時土壓力應有的變化來說,這個最大土壓力却正是墙上極限壓力的最小值。一般工程書籍,以為這土壓力既名為最大,就拿它來用作設計擋土墙的荷載,荷載如何能用最小的極限值呢?本文對朗金理論中的下列問題作了一些解釋:(1)朗金理論在擋土墙的位移問題上所受的限制,是和庫隆理論一樣的,竇薩基教授曾就此問題認為朗金理論是幻想,似乎是無根據的。(2)有些工程書中認為朗金理論是專為垂直的墙?

In designing foundation, the pressure due to an eccentric load will be assumed as a triangular or a trapezoid load to act on the surface of the semiinfinite elastic solid.

工程師們在進行地基設計時,如果遇到偏心儎作用的話,則压力將假定为一三角形或一梯形分佈地作用在半無限的彈性体上。本文提出了当三角形分佈儎作用於矩形面積上時求地基內垂直应力的方法。对地基設計者而言,它將是一个很实用的方法。另一个为我們所熟知的“角點法”是適用於均佈儎作用於一矩形面積上者,本法即与它相像,而能用以求得矩形基礎的指定的角點下任一深度Z处的垂直应力σ_z,且亦能以極其簡單之形式表示如下:σ_z=k_1q,其中L及b各表示矩形面積的边長(見圖1)。当我們知道L/b及Z/b之此值後,相应的k_1值即可很快地从本文中的表中查得。根据叠加原理,当一梯形儎作用於一矩形面積上時。地基內的垂直应力亦可用本法求之;因为由於梯形儎而在任意點所產生的σ_z是等於由於一个三角形分佈儎及一个均佈儎所產生的应力的代數和。很顯然地,如果將本法加以推廣的話,可以用它來求矩形面積上任一點下任意深度Z处的垂直应力,不論三角形分佈儎及梯形分佈儎均可適用

In this paper the influence values derived from the Westergaard solution forestimating the vertical normal stresses in soil are obtained under the followingcases: (1) Triangularly distributed load on a rectangular area; (2) Uniformly distributed load along a line of infinite length; (3) Uniformly distributed load on an infinitely long strip-area; (4) Triangularly distributed load on an infinitely long strip-area. The influence values for the above loading conditions and the cases ofuniformly distributed load...

In this paper the influence values derived from the Westergaard solution forestimating the vertical normal stresses in soil are obtained under the followingcases: (1) Triangularly distributed load on a rectangular area; (2) Uniformly distributed load along a line of infinite length; (3) Uniformly distributed load on an infinitely long strip-area; (4) Triangularly distributed load on an infinitely long strip-area. The influence values for the above loading conditions and the cases ofuniformly distributed load on a rectangular area and a circular area have beentabulated in order to simplify the application in practice.

本文以韦斯脱卡特(H.M.Westergaard)公式为依据,获得了计算地基中垂直应力的一些公式。这些公式是分别适用于下列各种荷载情况: (1)三角形荷载作用在矩形面积上; (2)均布荷载作用在一无限长的直线上; (3)均布荷载作用在无限长的条形面积上; (4)三角形荷载作用在无限长的条形面积上。 为了使实际计算得到简化,对于上述各种荷载情况,以及对于均布荷载作用在一矩形面积上和一圆形面积上时,本文均已将其感应值制成表格。

 
<< 更多相关文摘    
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关垂直的内容
在知识搜索中查有关垂直的内容
在数字搜索中查有关垂直的内容
在概念知识元中查有关垂直的内容
在学术趋势中查有关垂直的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社