 全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多   奇异对偶积分方程组 的翻译结果: 查询用时：0.206秒 在分类学科中查询 所有学科 数学 更多类别查询 历史查询  奇异对偶积分方程组  “奇异对偶积分方程组”译为未确定词的双语例句
 Orthogonal Polynomial Solving Method of General Singular Dual Integral Equations 一般形式的奇异对偶积分方程组正交多项式求解法 短句来源 相似匹配句对
 SYSTEMS OF HIGHER ORDER SINGULAR INTEGRAL EQUATIONS 高阶奇异积分方程组 短句来源 System for the Linear Singular Integral Equations in C~n C~n中的线性奇异积分方程组 短句来源 Orthogonal Polynomial Solving Method of General Singular Dual Integral Equations 一般形式的奇异对偶积分方程组正交多项式求解法 短句来源 ON SYSTEMS OF SINGULAR INTEGRAL EQUATIONS WITH COMPLEX TRANSLATIONS 带复平移的奇异积分方程组 短句来源 A Method of Solving a Kind on Dual Integral Equations Via Decoupling Into Canonical Cauchy Singular Integral Equations 一类对偶积分方程组正则化为Cauchy奇异积分方程组解法 短句来源 查询“奇异对偶积分方程组”译词为用户自定义的双语例句

我想查看译文中含有：的双语例句 没有找到相关例句 Based on the method of Jacobi orthogonal polynome, general singular dual integral equations are expressed as the series of Jacobi orthogonal polynome on n order. The general singular dual integral equations are changed into linear algebraic equations by Jacobi orthogonal polynome. Thus general solutions are given through solving unknown coefficient of every term in the series. The eqnivalence between singular dual integral equations and by it changed into algebraic equations, existence and non-uniqueness of... Based on the method of Jacobi orthogonal polynome, general singular dual integral equations are expressed as the series of Jacobi orthogonal polynome on n order. The general singular dual integral equations are changed into linear algebraic equations by Jacobi orthogonal polynome. Thus general solutions are given through solving unknown coefficient of every term in the series. The eqnivalence between singular dual integral equations and by it changed into algebraic equations, existence and non-uniqueness of expressive form on the solutions are proved exactly. In this paper the given theoretical solutions and solving method provides application to problems of solving mixed boundary value of complex mathematics, physics, soft science. 基于Jacobi正交多项式法,直接求解一般形式的对偶积分方程组,将对偶积分方程组中的未知函数,表示成n次Jacobi正交多项式级数,用正交多项式将奇异对偶积分方程组,化成线性代数方程组,通过求解级数中的各项系数,由此给出奇异对偶积分方程组的一般性解,并严格证明了奇异对偶积分方程组和由它化成的线性代数方程组的等价性,解的存在性和解的表示形式不唯一性．本文给出的理论解和解法,可供求解复杂的数学、物理、软科学中的混合边值问题应用． 相关查询

 CNKI小工具 在英文学术搜索中查有关奇异对偶积分方程组的内容 在知识搜索中查有关奇异对偶积分方程组的内容 在数字搜索中查有关奇异对偶积分方程组的内容 在概念知识元中查有关奇异对偶积分方程组的内容 在学术趋势中查有关奇异对偶积分方程组的内容

 CNKI主页 |  设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索 2008 CNKI－中国知网 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社