助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   耗散波动方程 在 数学 分类中 的翻译结果: 查询用时:0.521秒
图标索引 在分类学科中查询
所有学科
数学
更多类别查询

图标索引 历史查询
 

很抱歉,暂未找到该词条在当前类别下的译词。
您可以查看在所有学科的译词。
相关语句
  dissipative wave equations
    On the Asymptotic Property of Solutions to Some Nonlinear Dissipative Wave Equations
    一类非线性耗散波动方程的渐近性质(英文)
短句来源
    A Note on Singular Limit of the Exact Controllaility of Dissipative Wave Equations
    关于耗散波动方程精确能控性的奇异极限的一个注记
短句来源
    In this paper the decay of global solutions to some nonlinear dissipative wave equations are discussed, which based on the method of prior estimate technique and a differenece inequality.
    本文应用先验估计的方法并结合差分不等式证明了一类非线性耗散波动方程初边值问题整体解的衰减性质
短句来源
  “耗散波动方程”译为未确定词的双语例句
    ANALYSIS OF SINGULARITLES OF ONE-DIMENSIONAL WAVE EQUATIONS WITH DISSIPATIONS AND WAVELETS
    一维有耗散波动方程的奇性分析与小波
短句来源
    Firstly, total energy decay for linear damped wave equation is derived. This can be applied to the proof the global existence forsemilinear wave equation with nonlinear term |u|~α u satisfying1<α≤ 4/[N - 4]~+.
    首先利用一个Sobolev型不等式得到了线性耗散波动方程在外区域上的整体能量衰减估计,此结果用来证明1<α≤4/[N-4]~+的半线性波动方程解的整体存在性。
短句来源
    In this note we analyze the exact controllability of singularly perturbed damped wave equation with homogeneous Dirichlet boundary conditions under more general geometric control condition than that of [1]. We show that the null controllability of the heat equation can be obtained as a singular limit of the exact controllability of such sort of wave equations.
    本文在比文献[1]更一般的几何控制条件下,分析了具齐次Dirichlet边界条件的耗散波动方程精确能控性的奇异摄动问题.结论是由这类波动方程的精确能控性可得到热传导方程的精确零能控性.
短句来源
查询“耗散波动方程”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
没有找到相关例句


Applying the usual technique of linearization to wave equations with strongsingularity often produces artifacts, for those terms with strong singularities are omittedfor they are small in magnitude. Using the method of wavelets transform, the main terms in singularities are retained in simplification. So the result is more accurate in a point view of singularity analysis. We have applied the mathod to one-dimensionalwave equations in inhomogeneous media, and got the same main terms in singularitiesas the accurate...

Applying the usual technique of linearization to wave equations with strongsingularity often produces artifacts, for those terms with strong singularities are omittedfor they are small in magnitude. Using the method of wavelets transform, the main terms in singularities are retained in simplification. So the result is more accurate in a point view of singularity analysis. We have applied the mathod to one-dimensionalwave equations in inhomogeneous media, and got the same main terms in singularitiesas the accurate ones. In this paper, one-dimensional wave equations with dissipationsin inhomogeneous media are considered. The method of wavelets analysis is improved,and the same main terms in singularities as the accurate solutions are obtained as well。So we conclude applying wavelets analysis to singularity simplification is alwayseffective.especially to high-frequency approximation and singularity analysis.

对系数有强奇性(间断)的波动方程,用通常的线性化简的方法时往往会将数值小但奇性强的项略去,导致结果严重失真。利用小波变换这一工具,可以在化简时保留奇性的主要部分,使所得的结果从奇性分析的观点看来更为精确。此方法曾被用来处理系数有间断的一维波动方程,得到了与精确解的奇性主部完全一致的解.在本文中,我们改进了用小波变换作奇性化简的方法,对系数有间断的一维有耗散波动方程求得了与精确解奇性主部完全一致的解。这说明利用小波分析作奇性化简的方法对高频近似及奇性分析问题是普遍适用的.

In this note we analyze the exact controllability of singularly perturbed damped wave equation with homogeneous Dirichlet boundary conditions under more general geometric control condition than that of [1]. We show that the null controllability of the heat equation can be obtained as a singular limit of the exact controllability of such sort of wave equations.

本文在比文献[1]更一般的几何控制条件下,分析了具齐次Dirichlet边界条件的耗散波动方程精确能控性的奇异摄动问题.结论是由这类波动方程的精确能控性可得到热传导方程的精确零能控性.

In this paper the decay of global solutions to some nonlinear dissipative wave equations are discussed, which based on the method of prior estimate technique and a differenece inequality.

本文应用先验估计的方法并结合差分不等式证明了一类非线性耗散波动方程初边值问题整体解的衰减性质

 
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关耗散波动方程的内容
在知识搜索中查有关耗散波动方程的内容
在数字搜索中查有关耗散波动方程的内容
在概念知识元中查有关耗散波动方程的内容
在学术趋势中查有关耗散波动方程的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社