助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   基于灰度级 的翻译结果: 查询用时:0.02秒
图标索引 在分类学科中查询
所有学科
更多类别查询

图标索引 历史查询
 

基于灰度级
相关语句
  based on the gray level
     Based on template parameter maximum technique, a new method for the image count of the blood cell Is proposed, and is compared with the method based on the gray level thresolding segmentation.
     本文提出一套基于模板参数最大值的细胞图象计数方法,并与基于灰度级阈值分割的计数方法进行了比较。
短句来源
  “基于灰度级”译为未确定词的双语例句
     By analyzing the available disadvantages of the intensity-based image stitching, a fast automatic image stitching algorithm is proposed.
     针对现有基于灰度级相似的图像拼接方法的缺点,提出了一种图像自动拼接的快速算法。
短句来源
     This paper analyzes the shortage of shot segmentation technique based on the comparison between the inter-frame difference and the threshold,and the clustering method based on the color space and time threshold,considering the proper texture feature of mass characters in the teaching video,consequently presents a fuzzy clustering method based on the GLCM.
     该文分析了现有的对帧间特征差进行阈值比较的镜头分割方法,以及通过颜色空间和可调时间阈值进行视频聚类方法的不准确性,针对教案视频中大量文字内容体现出的特有的纹理特征,提出了使用基于灰度级共生矩阵纹理特征的C均值模糊聚类算法进行教案视频镜头分割。
短句来源
  相似匹配句对
     Gray-Level Linear Transformations Image Enhancement Based on Matlab
     基于Matlab的灰度线性变换图像增强
短句来源
     Embedding technique with gray digital watermark based on neural network
     基于神经网络的灰度数字水印嵌入技术
短句来源
     Gray-level adaptive blind watermarking based on human visual perception
     基于视觉特性的灰度自适应盲水印算法
短句来源
     Based on the yield criterion suggested by R.
     基于R.
短句来源
     Based on E.
     基于E.
短句来源
查询“基于灰度级”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
为了更好的帮助您理解掌握查询词或其译词在地道英语中的实际用法,我们为您准备了出自英文原文的大量英语例句,供您参考。
  based on the gray level
Therefore a threshold selection algorithm, based on the gray level histogram (GLH), is evaluated.
      
The first stage in the TFCM classification process maps individual discrete vectors to classes based on the gray level variations in the vectors.
      
We will also be investigating the optimum distance parameter for the textures based on the gray level distance vector.
      


Based on template parameter maximum technique, a new method for the image count of the blood cell Is proposed, and is compared with the method based on the gray level thresolding segmentation. The experiment showed that the former is superior than the latter on the repeatability and precision of the count result. The characteristic of the instrument lies in that a location system of the object stage is saved, and the cost of the Instrument is greatly reduced.

本文提出一套基于模板参数最大值的细胞图象计数方法,并与基于灰度级阈值分割的计数方法进行了比较。实验表明,前者在计数的重复性和准确性上均优于后者。该仪器的特点在于省却了一个载物台自动定位控制系统,使仪器成本大幅度降低。

In this paper, we investigate the effect of speckle reduction on the classification of SAR images. The adaptive Kuan filter and wavelet soft-thresholding filter are respectively used in speckle reduction. The feature vector is composed of tone of image and four texture features based on the gray-level co-occurrence matrix (GLCM). The maximum likelihood classifier is used in image classification. The classification accuracy of the filtered images is compared with that of the unfiltered images. The results show...

In this paper, we investigate the effect of speckle reduction on the classification of SAR images. The adaptive Kuan filter and wavelet soft-thresholding filter are respectively used in speckle reduction. The feature vector is composed of tone of image and four texture features based on the gray-level co-occurrence matrix (GLCM). The maximum likelihood classifier is used in image classification. The classification accuracy of the filtered images is compared with that of the unfiltered images. The results show that although the quality of the image improves, the classification accuracy increases slightly after speckle reduction, and even decreases in some cases. This is due to the loss of some structural information in the course of filtering. Accordingly, we propose an improved feature extraction scheme, adopting the tone of filtered image combined with the texture features based on the GLCM of unfiltered image to form the feature vector. The experimental results show that the improved scheme can enhance the performance of classification.

研究了相干斑噪声抑制对合成孔径雷达 (SAR)图像分类的影响。分别采用Kuan自适应滤波和小波变换软门限滤波两种方法进行了相干斑噪声抑制 ;对于SAR图像的分类则采用了图像的灰度以及基于灰度级共生矩阵的 4种纹理特征 ,并利用最大似然分类器进行了监督分类。处理结果表明 ,相干斑噪声的抑制尽管可以提高SAR图像的质量 ,但是由于在相干斑噪声得到抑制的同时 ,地物的固有结构信息也受到损失 ,因此分类精度提高甚微 ,在某些情况下甚至有所下降。针对这种情况 ,提出了一种改进的特征提取方法 ,将基于原图像的灰度级共生矩阵提取的纹理特征与滤波后图像的灰度特征进行组合用于分类。实验结果表明 ,改进的特征提取方法提高了SAR图像的分类精度。

By analyzing the available disadvantages of the intensity-based image stitching, a fast automatic image stitching algorithm is proposed.This algorithm takes into account the precision of image stitching as well as the speed of it, as to the pick-up of the base feature block, a simplemethod of edge information threshold is used, which realizes the automatic pick-up of base feature block, therefore improves the precision of imagestitching. In the problem of searching matching block, a hierarchical search strategy...

By analyzing the available disadvantages of the intensity-based image stitching, a fast automatic image stitching algorithm is proposed.This algorithm takes into account the precision of image stitching as well as the speed of it, as to the pick-up of the base feature block, a simplemethod of edge information threshold is used, which realizes the automatic pick-up of base feature block, therefore improves the precision of imagestitching. In the problem of searching matching block, a hierarchical search strategy is employed, which improves the speed of image stitching. Theexperiments show that the proposed algorithm greatly extends the scope of traditional image stitching algorithm and has good capabilities.

针对现有基于灰度级相似的图像拼接方法的缺点,提出了一种图像自动拼接的快速算法。该算法综合考虑了图像拼接的精度和速度,在基准特征块的提取上,采用简单的边缘信息阈值法,实现了基准块的自主选取,提高了图像拼接的精度;在块搜索上,采用金字塔式分层搜索策略,提高了图像拼接的速度。实验证明,该算法扩展了传统拼接算法的适用范围,具有较好的性能。

 
<< 更多相关文摘    
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关基于灰度级的内容
在知识搜索中查有关基于灰度级的内容
在数字搜索中查有关基于灰度级的内容
在概念知识元中查有关基于灰度级的内容
在学术趋势中查有关基于灰度级的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社