助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   小波合成 的翻译结果: 查询用时:0.415秒
图标索引 在分类学科中查询
所有学科
电信技术
更多类别查询

图标索引 历史查询
 

小波合成
相关语句
  wavelet synthesis
     Wavelet Synthesis of 1/f Processes
     1/f过程的小波合成
短句来源
     A method of wavelet synthesis of 1/f processes is proposed in this paper.
     本文提出了 1 /f过程的小波合成方法。
短句来源
     So the high-resolution image may be generated by the wavelet synthesis.
     最后通过离散二进小波合成得到高分辨率图像。
短句来源
  相似匹配句对
     Coumarin fluorescent dyes such as C.
     合成了C.
短句来源
     N,N,N?
     合成了 N,N,N?
短句来源
     View Synthesis via Wavelet Based Morphing
     小波空间的视图变形合成
短句来源
     Wavelet Synthesis of 1/f Processes
     1/f过程的小波合成
短句来源
     The beta criterion is proposed according to the character of W-M and wavelet function.
     用小波(?)
短句来源
查询“小波合成”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
为了更好的帮助您理解掌握查询词或其译词在地道英语中的实际用法,我们为您准备了出自英文原文的大量英语例句,供您参考。
  wavelet synthesis
A Daubechies 7-tap wavelet synthesis filter is utilized to ensure an accurate interpolation of the warped pixels.
      
A single stage wavelet synthesis and analysis in one dimension is shown in Figure 1.2.
      
As mentioned in section 1, the wavelet synthesis error on the thread boundary is larger than that on the within-thread pixels.
      
Finally, this approach captures the scaling phenomena inherent in the self-similar processes like the wavelet synthesis does.
      
In that sense, aggregation with micropulses is essentially a wavelet synthesis, but with superior qualities.
      
更多          


A method of wavelet synthesis of 1/f processes is proposed in this paper. Based on the self-similarity characteristics of the wavelet bases and the decorrelative capacity of the wavelet transformation, the discrete wavelet coefficients of 1/f processes with self-similar properties are analyzed and the wavelet model of 1/f processes is given in combination with the correlative structure of AR model. The experiments show that this model significantly improves the approximation in comparison with the...

A method of wavelet synthesis of 1/f processes is proposed in this paper. Based on the self-similarity characteristics of the wavelet bases and the decorrelative capacity of the wavelet transformation, the discrete wavelet coefficients of 1/f processes with self-similar properties are analyzed and the wavelet model of 1/f processes is given in combination with the correlative structure of AR model. The experiments show that this model significantly improves the approximation in comparison with the often used assumption that the wavelet coefficients are completely uncorrelated.

本文提出了 1 /f过程的小波合成方法。利用小波基函数的自相似特性和正交小波变换的去相关能力 ,分析了具有自相似性的 1 /f过程的小波变换系数的特点 ,并结合AR模型的相关函数结构给出了 1 /f过程的小波模型。仿真结果表明 ,该模型有较好的逼近效果。

The key problem of analyzing fMRI data is how to detect and locate the functional active signal accurately and reliably from the noisy image series. By investigating the properties of Rician noise in MRI, we get that the wavelet coefficients of the squared magnitude image are unbiased estimators of the wavelet coefficients of the noise-free squared image, and report a new multiscale method to analyze fMRI data in the wavelet domain. With the multiscale discrete wavelet decomposition of the squared magnitude...

The key problem of analyzing fMRI data is how to detect and locate the functional active signal accurately and reliably from the noisy image series. By investigating the properties of Rician noise in MRI, we get that the wavelet coefficients of the squared magnitude image are unbiased estimators of the wavelet coefficients of the noise-free squared image, and report a new multiscale method to analyze fMRI data in the wavelet domain. With the multiscale discrete wavelet decomposition of the squared magnitude image series, apply the statistical parametric tests of significance on the filtered wavelet coefficients directly, and get the brain function activation map by wavelet synthesize the significant coefficients. The result of experiment indicates our method has better sensitivity and reliability.

如何从低信噪比的序列图像中准确、可靠地检测及定位功能激发信号成为功能磁共振(fMRI)数据分析的关键问题。通过分析MRI的Rician噪声特性,我们得到平方幅度图像的小波系数是无噪的平方幅度图像的小波系数的无偏估计,并提出了一种新的小波域多尺度分析fMRI数据的方法。该方法基于对fMRI平方幅度序列图像进行多尺度离散小波分解,然后对滤波后的小波系数直接进行统计参数检验,最终对统计显著的系数进行小波合成得到脑功能激发映射图。实验结果表明,我们提出的方法具有较高的检测敏感性及定位可靠性。

An image interpolation scheme was introduced based on edges preserving using discrete dyadic wavelet transform(DDWT).By the exponential decay property of the multiscale edges,the edges of the lost high frequency subband are predicted.And the other coefficients of the high frequency subband are obtained by cubic spline interpolation algorithm.So the high-resolution image may be generated by the wavelet synthesis.Experimental results show that the interpolated images of the algorithm are better than conventional...

An image interpolation scheme was introduced based on edges preserving using discrete dyadic wavelet transform(DDWT).By the exponential decay property of the multiscale edges,the edges of the lost high frequency subband are predicted.And the other coefficients of the high frequency subband are obtained by cubic spline interpolation algorithm.So the high-resolution image may be generated by the wavelet synthesis.Experimental results show that the interpolated images of the algorithm are better than conventional algorithms such as bilinear and bicubic interpolation.For images that own less texture like Lena,the PSNR value increased about 2 dB.And the interpolated image quality of others may also have some increasing.The high-resolution images are more in of accord with human visual system characteristic.

利用离散二进小波变换(DDWT)所具有的良好的多尺度边缘提取特性以及子带间的相关性,提出了基于DDWT的边缘保持图像插值算法。算法利用多尺度边缘的指数衰减规律预测损失掉的高频子带中的边缘,并利用三次样条插值算法恢复损失掉的高频子带中的非边缘信息。最后通过离散二进小波合成得到高分辨率图像。实验结果显示,该算法优于传统的双线性和双三次插值算法。对于像Lena这样的纹理较少的图像其峰值信噪比(PSNR)提高了2dB以上,而对其它图像插值的结果也有不同程度的质量改善,插值的结果更符合人的视觉系统特性。

 
<< 更多相关文摘    
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关小波合成的内容
在知识搜索中查有关小波合成的内容
在数字搜索中查有关小波合成的内容
在概念知识元中查有关小波合成的内容
在学术趋势中查有关小波合成的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社